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Thm [Krengel, Sucheston, Garling '/ /]: There exists a strategy for which

We cannot do better than 1/2!

Any ALG gets < 1.

Ihe prophet gets [& [max{wl,wz}] ~ 2

w; =1 Wz—

8Wp1—8

1/€, w.p. e

Thm In fact, it 1s a fixed threshold strategy! [Samuel-Cahn '84; Kleinberg, Weinberg "| 2]
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o ALG (or decision-maker) decides to pick each elem immediately and irrevocably.

O Goal: Pick set of elms that max a weight function s.t. (dovvnvvard—dos@onstraints F.

Whenever & € F, then @ e Fif@Q C &

Matching Knapsack Matroid

c |

| M = (E,1)
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Tradrtionally in Pls we use the ratio of expectations RoE :=

For single choice, the probability of selecting the max PbM := Pr[ALG = OPT]| has been
studied (e.g., [ Esfandiari, HajiAghayi, Mitzenmacher, Lucier 20], [Nuti 22] ).

Recently, an alternative benchmark has been the optimal online algorithm (e.g., [Anari, Niazadeh,
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ALG
This work:We Initialize the study of the expected ratio EoR := [t [OPT] .
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r Main Result (informal) 1

Iwo-way blackbox reduction: For every downward-closed constraint,
RoE and EoR are at most a multiplicative constant factor apart

f Result 1 (warmup) > f Result 2 (RoE — EoR)
For single-choice settings EoR = PbM . EoR(F) > RoE(F)/12

RoE(F) > EoR(F)/18
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Now the objective is EoR(F, D, ALG) := [ [ ]

on) = EoR(F) := infsup E [

D a1G
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In fact, the statement says sth stronger:

Corollary: The gap between RoE and EoR is at least 2/e, since

1 1
RoE(F) = Y > — = EoR(F) for fixed order
e

M



Reduction RoE — EoR :some tools



Reduction RoE — EoR :some tools

We define the threshold Pr

T 2 maxw,
ecelk

] =y e (0,1).

12



Reduction RoE — EoR : some tools

We define the threshold Pr

T 2> maxwe] =y e (0,1).
eck

Forevents €0 *= {‘v’e ek :w,< T} e have Pr [%O] =y

& | :={EI!eEE:we>T} Pr [%1] > ylog (l)
g



Reduction RoE — EoR : some tools

We define the threshold Pr

T 2> maxwe] =y e (0,1).
eck

For events 60 1= {Ve celb:w, < T} Pr [%O] =y

we have 1\
& | :={EI!eEE:we>T} Pr [%1] > ylog (_>
Y

Truncated distr. D, :=D,,, . . Observation: D < D | &, .

12



Reduction RoE — EoR : some tools

We define the threshold Pr

T 2> maxwe] =y e (0,1).
eck

Cor events 60 1= {‘v’e eb:w,< T} we have Pr [%O] =7 N
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Assumption:We have ALGg, g for which [E [a(w) | %0] > a - E [f(w) | %O].

Parameters: y € (0,1), ¢ > 0.
Output: Feasible set ALG(w).

f E|lf(w)] < ¢ - 7 then:
“Catch the superstar”

else:
"Run the Combinatorial Algorithm”
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lsnore other cases.

Pr|&,| > ylog (y)

f we catch the (unique) superstar and stop, we recover constant fraction A(c) of f(w).

> Pr[&,]- A(c) = O(1)

[a(W)
Then, for Case 1: [E
J(w)
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T “normalized” OPT [ [f(W)] s big, then imagine that many boxes contribute to .

Count contribution only@n no w, excee@\gnore other cases.

Technical ingredient: For every 7 > 0, the function f/7 restricted to [0,z]'#! is self-bounding

Sharp concentration around Its expectation!
| Boucheron, Lugosli, Massart '00]

Then proof proceeds In two high-level steps:
|, UB value of ex-post OPT with high enough (constant) probabillity.

2. LB expected value of ALGg g | ex-post OPT not too large.

a(w)

J(w)

All in all for Case 2: [E [

> Pr(&,] - a- Tk, &) = O(1) .
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Observation: Our reduction achieves an O(a) — approximation of the ex-post OPT with
constant probability (independent of a).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No O(1) — approximation with (1 — &) prob. No (1 — &) — approximation with O(1) prob.
8 w.p. 1/2
wp =1 sz —, w.p. 1/2 prl/z

¢ For each pair: wi; =1 wy; =

2 w.p. 1/2
No algo can do > & — approx.

with prob. > 1/2. For (1 — &) — approx. need to guess max
in > 2/3 pairs — arbitrarily small prob.
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Extensions and observation

O lhe reductions hold for any arrival order (random [EHLM | /], free [Yan '| | ], etc.)

O lhey can be adjusted (with worse constants) to scenarios where we have a single sample

from each distribution.

O We can extend the same techniques up to XOS weight functions (again, losing an extra

constant factor). Subadditive
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O Is it maybe always RoE(F) > EoR(F) ?

o Can we apply similar ideas to online minimization problems ?
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o What can we say when we have more samples from each distribution ¢
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