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Thm [Krengel, Sucheston, Garling ’77]: There exists a strategy for which .𝔼[Seller] ≥ 1/2 ⋅ 𝔼[Prophet]

We cannot do better than !1/2

 w2 =
, w.p. 1/ε ε

, w.p. ε 1 − ε

Thm In fact, it is a fixed threshold strategy! [Samuel-Cahn ’84; Kleinberg, Weinberg ’12]

Any ALG gets .≤ 1

The prophet gets . 𝔼 [max{w1, w2}] ≈ 2   w1 = 1
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Elements arrive one by one. For each elem ,  is revealed upon arrival.j wj ∼ Dj

ALG (or decision-maker) decides to pick each elem immediately and irrevocably.

Goal: Pick set of elms that max a weight function s.t. (downward-closed) constraints .F

Whenever 𝒮 ∈ F,  then 𝒬 ∈ F if 𝒬 ⊆ 𝒮 .

Matching Knapsack Matroid
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A very active area of research with lots of open questions! Some well-studied directions are: 
Arrival order of the elements                                                                                           
[Hill, Kertz ’82], [Yan ’11],  [Ehsani, Hajiaghayi, Kesselheim, Singla ’18], [Correa, Saona, Ziliotto ’21], 
[Correa, Foncea, Hoeksma, Oosterwijk,  Vredeveld ’21]

Combinatorial settings                                                                                                             
[Alaei ’11], [Kleinberg, Weinberg ’12], [Gravin, Feldman, Lucier ’15], [Dütting, Feldman, Kesselheim, 
Lucier ’17], [Rubinstein, Singla ’17], [Ezra, Feldman, Gravin, Tang ’20], [Feldman, Svensson, 
Zenklusen ’21], [Jiang, Ma, Zhang ’22]

Samples from unknown distributions                                                                                      
[Azar, Kleinberg, Weinberg ’14], [Correa, Dütting, Fischer, Schewior ’19], [Rubinstein, Wang, 
Weinberg ’20], [Correa, Cristi, Epstein, Soto ’20], [Kaplan, Naori, Raz ’20], [Caramanis, Dütting,   
Faw, Fusco, Lazos, Leonardi, Papadigenopoulos, Pountourakis, Reiffenhäuser ’22]

Connections to posted price mechanisms                                                                               
[Hajiaghayi, Kleinberg, Sandholm ’07], [Chawla, Hartline, Malec, Sivan ’10], , [Dütting, Feldman, 
Kesselheim, Lucier ’17], [Correa, Pizarro, Verdugo ’19]                  
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Traditionally in PIs we use the ratio of expectations   .RoE :=
𝔼[ALG]
𝔼[OPT]

For single choice, the probability of selecting the max  has been 
studied (e.g., [Esfandiari, HajiAghayi, Mitzenmacher, Lucier ’20], [Nuti ’22] ).

PbM := Pr[ALG = OPT]

This work: We initialize the study of the expected ratio   .EoR := 𝔼 [ ALG

OPT ]

Recently, an alternative benchmark has been the optimal online algorithm (e.g., [Anari, Niazadeh, 
Saberi, Shameli ’19], [Papadimitrou, Pollner, Saberi, Wajc ’21]).
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1. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid 
the possibility of extremely bad outcomes).

 w2 =
, w.p. 1 + 2ε

ε
ε

, w.p. 0 1 − ε
  w1 = 1

Best ALG for RoE : Always choose the 2nd box

2. Find right generalization of PbM in combinatorial settings.

RoE =
1
2

EoR = ε

⋯

Constraint: Select one box from each pair PbM ≤
1
2n

EoR ≥
2
3

Jensen’s ineq

 w2,i =
, w.p. 2 1/2
, w.p. 0 1/2

  w1,i = 1

For each pair :
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 w2 =
, w.p. 1 + 2ε

ε
ε

, w.p. 0 1 − ε
  w1 = 1

Evaluate RoE ALG with EoR

Optimal RoE ALG : Set threshold τ =
𝔼[OPT]

2

This gives (tight)  but  !RoE =
1
2

EoR = ε

Evaluate EoR ALG with RoE

 w2 =
, w.p. 1

ε2
ε

, w.p. ε2 1 − ε
  w1 = 1

Optimal EoR ALG : Always pick the first box .

This gives  but  !EoR > 1 − ε RoE < ε
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Main Result (informal)

Two-way blackbox reduction: For every downward-closed constraint, 
RoE and EoR are at most a multiplicative constant factor apart.  

Result  (warmup)1

For single-choice settings  .EoR = PbM

Result  (RoE  EoR)2 →

EoR(F) ≥ RoE(F)/12

Result  (EoR  RoE)3 →

RoE(F) ≥ EoR(F)/18
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≥0 OPT(w) = arg max

S∈F ∑
e∈S

we

With abuse of notation, our additive (for this talk) weight function is  . w(S) := ∑
e∈S

we

We denote by                                    .   fF(w) := w(OPT(w))
aALG(w) := w(ALG(w))

Now the objective is . EoR(F, D, ALG) := 𝔼 [ a(w)
f(w) ] ⇒ EoR(F) := inf

D
sup
ALG

𝔼 [ a(w)
f(w) ]

Analogously:  and  . RoE(F) := inf
D

sup
ALG

𝔼 [a(w)]
𝔼 [f(w)]

PbM(F) := inf
D

sup
ALG

Pr [a(w) = f(w)]
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In fact, the statement says sth stronger:  

Thm : For each product distr. , we can construct a new product distr.  for which EoR
is abritrarily close to the PbM of the original distribution.  

D D′￼

Corollary:  The gap between RoE and EoR is at least , since

 for fixed order.

2/e

RoE(F) =
1
2

>
1
e

= EoR(F)
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We define the threshold  . Pr [τ ≥ max
e∈E

we] = γ ∈ (0,1)

Truncated distr.   .   De := De∣we≤τ Observation:   .   D ⇔ D ∣ ℰ0

For events  ℰ0 := {∀e ∈ E : we ≤ τ}
ℰ1 := {∃!e ∈ E : we > τ}

we have
 Pr [ℰ0] = γ

Pr [ℰ1] ≥ γ log ( 1
γ )

.

Useful Lemma :   . f(w) ≤ f(w) + ∑
e∈E

we ⋅ 1 [we > τ]
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Idea: Case distinction when prophet’s value comes from a small or a large number of boxes.   

Assumption: We have  for which .   ALGRoE 𝔼 [a(w) ∣ ℰ0] ≥ α ⋅ 𝔼 [f(w) ∣ ℰ0]

If  then:    𝔼[ f(w)] ≤ c ⋅ τ
“Catch the superstar”

else:    
“Run the Combinatorial Algorithm”

Parameters: , .   γ ∈ (0,1) c > 0
Output: Feasible set .   ALG(w)
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If  “normalized” OPT  not too big, then imagine that few boxes contribute the most.𝔼 [f(w)]
Count contribution only from the cases for which exactly one  (i.e., superstar element).
Ignore other cases.

we ≥ τ

Pr [ℰ1] ≥ γ log ( 1
γ )

If we catch the (unique) superstar and stop, we recover constant fraction  of  .Λ(c) f(w)

Then, for Case :   .1 𝔼 [ a(w)
f(w) ] ≥ Pr[ℰ1] ⋅ Λ(c) = O(1)
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If  “normalized” OPT  is big, then imagine that many boxes contribute to it.𝔼 [f(w)]
Count contribution only when no  exceeds . Ignore other cases.we τ

Technical ingredient: For every , the function  restricted to  is self-boundingτ > 0 f/τ [0,τ]|E|

All in all, for Case :   .2 𝔼 [ a(w)
f(w) ] ≥ Pr[ℰ0] ⋅ α ⋅ Γ(k, δ) = O(1)

Pr [ℰ0] = γ

[Boucheron, Lugosi, Massart ’00]
Then proof proceeds in two high-level steps: 

1. UB value of ex-post OPT with high enough (constant) probability. 
2. LB expected value of   ex-post OPT not too large.ALGRoE ∣

Sharp concentration around its expectation! 
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constant probability (independent of .

O(α) − approximation
α)

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No  with  prob.O(1) − approximation (1 − ε)

 w2 =
, w.p. 1

ε
1/2

, w.p. ε 1/2
  w1 = 1

No  with  prob.(1 − ε) − approximation O(1)

No algo can do . 
with prob. .

> ε − approx
> 1/2

⋯

 w2,i =
, w.p. 2 1/2
, w.p. 0 1/2

  w1,i = 1For each pair :

For  need to guess max 
in  pairs  arbitrarily small prob.

(1 − ε) − approx.
> 2/3 →
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The reductions hold for any arrival order (random [EHLM ’17], free [Yan ’11], etc.)

They can be adjusted (with worse constants) to scenarios where we have a single sample 
from each distribution.

 We can extend the same techniques up to XOS weight functions (again, losing an extra 
constant factor).

Additive

Submodular
XOS

Subadditive
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For every downward-closed feasibility constraint, arrival order, and XOS weight functions,                       
we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Open Questions:

RoE and EoR have at least a . What’s the tight factor ?(2/e) − gap

Is it maybe always  ?RoE(F) ≥ EoR(F)
Can we apply similar ideas to online minimization problems ?                                                                
Note: [Garg, Gupta, Leonardi, Sankowski ’08] briefly discuss EoR for the online Steiner tree.
What can we say when we have more samples from each distribution ?
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Thank you for your attention!
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