Prophet Inequalities via the Expected Competitive Ratio

Alexandros Tsigonias-Dimitriadis, Universidad de Chile

Joint work with Tomer Ezra, Stefano Leonardi, Rebecca Reiffenhäuser (Sapienza University of Rome), and Matteo Russo (Georgia Tech)

Prophet Inequality

Prophet Inequality

$U[4,7]$

$U[2,9]$

$U[2,4]$

Prophet Inequality

$U[4,7]$
$U[2,9]$

3.2

Prophet Inequality

$U[4,7]$
$U[2,9]$

Prophet Inequality

$U[4,7]$
$U[2,9]$
6.3

Prophet Inequality

5.8

7

6.3

Prophet Inequality

5.8

7

6.3

Thm [Krengel, Sucheston, Garling '77]:There exists a strategy for which $\mathbb{E}[$ Seller $] \geq 1 / 2 \cdot \mathbb{E}[$ Prophet $]$.

Prophet Inequality

5.8

7

6.3

Thm [Krengel, Sucheston, Garling '77]:There exists a strategy for which $\mathbb{E}[$ Seller $] \geq 1 / 2 \cdot \mathbb{E}[$ Prophet $]$. We cannot do better than $1 / 2$!

Prophet Inequality

5.8

7

6.3

Thm [Krengel, Sucheston, Garling '77]:There exists a strategy for which $\mathbb{E}[$ Seller $] \geq 1 / 2 \cdot \mathbb{E}[$ Prophet $]$. We cannot do better than $1 / 2$!

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1-\varepsilon \\
1 / \varepsilon, \text { w.p. } \varepsilon
\end{array}\right.
$$

Prophet Inequality

5.8

7

6.3

Thm [Krengel, Sucheston, Garling '77]:There exists a strategy for which $\mathbb{E}[$ Seller $] \geq 1 / 2 \cdot \mathbb{E}[$ Prophet $]$. We cannot do better than $1 / 2$!

Any ALG gets ≤ 1.

The prophet gets $\mathbb{E}\left[\max \left\{w_{1}, w_{2}\right\}\right] \approx 2$.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1-\varepsilon \\
1 / \varepsilon, \text { w.p. } \varepsilon
\end{array}\right.
$$

Prophet Inequality

5.8

7

6.3

Thm [Krengel, Sucheston, Garling '77]:There exists a strategy for which $\mathbb{E}[$ Seller $] \geq 1 / 2 \cdot \mathbb{E}[$ Prophet $]$. We cannot do better than $1 / 2$!

Any ALG gets ≤ 1.

The prophet gets $\mathbb{E}\left[\max \left\{w_{1}, w_{2}\right\}\right] \approx 2$.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1-\varepsilon \\
1 / \varepsilon, \text { w.p. } \varepsilon
\end{array}\right.
$$

Thm In fact, it is a fixed threshold strategy! [Samuel-Cahn '84; Kleinberg, Weinberg ' 12]

Bayesian online selection problems

Bayesian online selection problems

- Elements arrive one by one. For each elem $j, w_{j} \sim D_{j}$ is revealed upon arrival.

Bayesian online selection problems

- Elements arrive one by one. For each elem $j, w_{j} \sim D_{j}$ is revealed upon arrival.
- ALG (or decision-maker) decides to pick each elem immediately and irrevocably.

Bayesian online selection problems

- Elements arrive one by one. For each elem $j, w_{j} \sim D_{j}$ is revealed upon arrival.
o ALG (or decision-maker) decides to pick each elem immediately and irrevocably.
- Goal: Pick set of elms that max a weight function s.t. (downward-closed) constraints F.

Bayesian online selection problems

- Elements arrive one by one. For each elem $j, w_{j} \sim D_{j}$ is revealed upon arrival.
o ALG (or decision-maker) decides to pick each elem immediately and irrevocably.
- Goal: Pick set of elms that max a weight function s. (downward-closed) gonstraints F.

Whenever $\mathcal{S} \in \mathrm{F}$, then $\mathbb{Q} \in \mathrm{F}$ if $\mathbb{Q} \subseteq \mathcal{S}$.

Bayesian online selection problems

- Elements arrive one by one. For each elem $j, w_{j} \sim D_{j}$ is revealed upon arrival.
o ALG (or decision-maker) decides to pick each elem immediately and irrevocably.
- Goal: Pick set of elms that max a weight function s. (downward-closed) gonstraints F.

Whenever $\mathcal{S} \in \mathrm{F}$, then $\mathbb{Q} \in \mathrm{F}$ if $\mathscr{Q} \subseteq \mathcal{S}$.

Knapsack
c 1

$$
\mathcal{M}=(E, \mathcal{I})
$$

Prophet inequalities literature

Prophet inequalities literature

A very active area of research with lots of open questions! Some well-studied directions are:

Prophet inequalities literature

A very active area of research with lots of open questions! Some well-studied directions are:
o Arrival order of the elements
[Hill, Kertz '82], [Yan 'I I], [Ehsani, Hajiaghayi, Kesselheim, Singla 'I 8], [Correa, Saona, Ziliotto '2 I], [Correa, Foncea, Hoeksma, Oosterwijk, Vredeveld '2I]
o Combinatorial settings
[Alaei ' I I], [Kleinberg, Weinberg 'I 2], [Gravin, Feldman, Lucier ' I 5], [Dütting, Feldman, Kesselheim,
Lucier 'I7], [Rubinstein, Singla 'I7], [Ezra, Feldman, Gravin, Tang '20], [Feldman, Svensson, Zenklusen '2 I], [Jiang, Ma, Zhang '22]

- Samples from unknown distributions
[Azar, Kleinberg, Weinberg '|4], [Correa, Dütting, Fischer, Schewior 'I 9], [Rubinstein, Wang, Weinberg '20], [Correa, Cristi, Epstein, Soto '20], [Kaplan, Naori, Raz '20], [Caramanis, Dütting, Faw, Fusco, Lazos, Leonardi, Papadigenopoulos, Pountourakis, Reiffenhäuser '22]
o Connections to posted price mechanisms
[Hajiaghayi, Kleinberg, Sandholm '07], [Chawla, Hartline, Malec, Sivan 'I 0], , [Dütting, Feldman, Kesselheim, Lucier 'I7], [Correa, Pizarro,Verdugo 'I9]

Performance measures

Performance measures

Traditionally in Pls we use the ratio of expectations $\operatorname{RoE}:=\frac{\mathbb{E}[A L G]}{\mathbb{E}[\mathrm{OPT}]}$.

Performance measures

Traditionally in Pls we use the ratio of expectations $\operatorname{RoE}:=\frac{\mathbb{E}[A L G]}{\mathbb{E}[O P T]}$.

For single choice, the probability of selecting the max $\mathrm{PbM}:=\operatorname{Pr}[\mathrm{ALG}=\mathrm{OPT}]$ has been studied (e.g., [Esfandiari, HajiAghayi, Mitzenmacher, Lucier '20], [Nuti '22]).

Performance measures

Traditionally in Pls we use the ratio of expectations $\operatorname{RoE}:=\frac{\mathbb{E}[A L G]}{\mathbb{E}[O P T]}$.

For single choice, the probability of selecting the max $\mathrm{PbM}:=\operatorname{Pr}[\mathrm{ALG}=\mathrm{OPT}]$ has been studied (e.g., [Esfandiari, HajiAghayi, Mitzenmacher, Lucier '20], [Nuti '22]).

Recently, an alternative benchmark has been the optimal online algorithm (e.g., [Anari, Niazadeh, Saberi, Shameli '19], [Papadimitrou, Pollner, Saberi, Wajc '2I]).

Performance measures

Traditionally in Pls we use the ratio of expectations $\operatorname{RoE}:=\frac{\mathbb{E}[A L G]}{\mathbb{E}[O P T]}$.

For single choice, the probability of selecting the $\max \mathrm{PbM}:=\operatorname{Pr}[\mathrm{ALG}=\mathrm{OPT}]$ has been studied (e.g., [Esfandiari, HajiAghayi, Mitzenmacher, Lucier '20], [Nuti '22]).

Recently, an alternative benchmark has been the optimal online algorithm (e.g., [Anari, Niazadeh, Saberi, Shameli '19], [Papadimitrou, Pollner, Saberi, Wajc '2I]).

This work: We initialize the study of the expected ratio EoR $:=\mathbb{E}\left[\frac{\mathrm{ALG}}{\mathrm{OPT}}\right]$.

Motivation

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

$w_{1}=1$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

$$
\mathrm{EoR}=\varepsilon
$$

$w_{1}=1$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Best ALG for RoE: Always choose the 2 nd box

$$
\operatorname{RoE}=\frac{1}{2}
$$

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Best ALG for RoE: Always choose the 2 nd box

$$
\operatorname{RoE}=\frac{1}{2} \quad \text { EoR }=\varepsilon
$$

2. Find right generalization of PbM in combinatorial settings.

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Best ALG for RoE: Always choose the 2nd box

$$
\operatorname{RoE}=\frac{1}{2}
$$

$$
\mathrm{EoR}=\varepsilon
$$

2. Find right generalization of PbM in combinatorial settings.

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

Best ALG for RoE: Always choose the 2nd box

$$
\operatorname{RoE}=\frac{1}{2}
$$

$$
\mathrm{EoR}=\varepsilon
$$

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

2. Find right generalization of PbM in combinatorial settings.

$$
w_{1, i}=1
$$

$$
w_{2, i}=\left\{\begin{array}{l}
0, \text { w.p. } 1 / 2 \\
2, \text { w.p. } 1 / 2
\end{array}\right.
$$

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

Best ALG for RoE: Always choose the 2nd box

$$
\operatorname{RoE}=\frac{1}{2} \quad \text { EoR }=\varepsilon
$$

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

2. Find right generalization of PbM in combinatorial settings.

For each pair:

Constraint: Select one box from each pair

$$
w_{1, i}=1 \quad w_{2, i}=\left\{\begin{array}{l}
0, \text { w.p. } 1 / 2 \\
2, \text { w.p. } 1 / 2
\end{array}\right.
$$

Motivation

I. RoE can perform poorly wrt the ex-post outcome, does not capture risk aversion (i.e., avoid the possibility of extremely bad outcomes).

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Best ALG for RoE: Always choose the 2nd box

$$
\text { RoE }=\frac{1}{2} \quad \text { EoR }=\varepsilon
$$

$$
w_{1}=1
$$

For each pair:
2. Find right generalization of PbM in combinatorial settings.

$$
w_{1, i}=1
$$

$$
w_{2, i}=\left\{\begin{array}{l}
0, \text { w.p. } 1 / 2 \\
2, \text { w.p. } 1 / 2
\end{array}\right.
$$

Jensen's ineq

$$
\mathrm{PbM} \leq \frac{1}{2^{n}} \quad \text { EoR } \geq \frac{2}{3}
$$

Naive RoE to EoR (and vice versa)

Naive RoE to EoR (and vice versa)

- Evaluate RoE ALG with EoR

$w_{1}=1$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Naive RoE to EoR (and vice versa)

o Evaluate RoE ALG with EoR

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Naive RoE to EoR (and vice versa)

o Evaluate RoE ALG with EoR

Optimal RoE ALG : Set threshold $\tau=\frac{\mathbb{E}[O P T]}{2}$
This gives (tight) RoE $=\frac{1}{2}$ but EoR $=\varepsilon$!

Naive RoE to EoR (and vice versa)

o Evaluate RoE ALG with EoR

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

This gives (tight) RoE $=\frac{1}{2}$ but EoR $=\varepsilon$!

- Evaluate EoR ALG with RoE

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon^{2}, \text { w.p. } 1-\varepsilon \\
\frac{1}{\varepsilon^{2}}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Naive RoE to EoR (and vice versa)

o Evaluate RoE ALG with EoR

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

This gives (tight) RoE $=\frac{1}{2}$ but EoR $=\varepsilon$!

Optimal EoR ALG : Always pick the first box.

$$
w_{2}=\left\{\begin{array}{l}
\varepsilon^{2}, \text { w.p. } 1-\varepsilon \\
\frac{1}{\varepsilon^{2}}, \text { w.p. } \varepsilon
\end{array}\right.
$$

Naive RoE to EoR (and vice versa)

o Evaluate RoE ALG with EoR

$$
w_{1}=1
$$

$$
w_{2}=\left\{\begin{array}{l}
0, \text { w.p. } 1-\varepsilon \\
\frac{1+2 \varepsilon}{\varepsilon}, \text { w.p. } \varepsilon
\end{array}\right.
$$

This gives (tight) RoE $=\frac{1}{2}$ but EoR $=\varepsilon$!

Optimal EoR ALG : Always pick the first box .

This gives EoR $>1-\varepsilon$ but RoE $<\varepsilon$!
$w_{1}=1$

$$
w_{2}=\left\{\begin{array}{l}
\varepsilon^{2}, \text { w.p. } 1-\varepsilon \\
\frac{1}{\varepsilon^{2}}, \text { w.p. } \varepsilon
\end{array}\right.
$$

What is the relation between RoE and EoR in settings with general combinatorial constraints ?

Our results

Our results

Main Result (informal)
Two-way blackbox reduction: For every downward-closed constraint, RoE and EoR are at most a multiplicative constant factor apart.

Our results

Main Result (informal)

Two-way blackbox reduction: For every downward-closed constraint, RoE and EoR are at most a multiplicative constant factor apart.

Result 1 (warmup)
For single-choice settings EoR $=\mathrm{PbM}$.

Our results

Main Result (informal)

Two-way blackbox reduction: For every downward-closed constraint, RoE and EoR are at most a multiplicative constant factor apart.


```
Result 2(RoE }->\mathrm{ EoR)
    EoR(F) \geqRoE(F)/12
```


Our results

Main Result (informal)

Two-way blackbox reduction: For every downward-closed constraint, RoE and EoR are at most a multiplicative constant factor apart.


```
Result 2(RoE }->\mathrm{ EoR)
    EoR(F)\geqRoE(F)/12
```

$$
\begin{aligned}
& \text { Result } 3(\mathrm{EoR} \rightarrow \text { RoE }) \\
& \operatorname{RoE}(\mathrm{F}) \geq \mathrm{EoR}(\mathrm{~F}) / 18
\end{aligned}
$$

Preliminaries

Preliminaries

For $w_{e} \sim D_{e}, D=\times_{e \in E} D_{e}, w \in \mathbb{R}_{\geq 0}^{|E|}$, we define $\operatorname{OPT}(w)=\arg \max _{S \in \mathrm{~F}} \sum_{e \in S} w_{e}$.

Preliminaries

For $w_{e} \sim D_{e}, D=\times_{e \in E} D_{e}, w \in \mathbb{R}_{\geq 0}^{|E|}$, we define $\operatorname{OPT}(w)=\arg \max _{S \in \mathrm{~F}} \sum_{e \in S} w_{e}$.
With abuse of notation, our additive (for this talk) weight function is $w(S):=\sum_{e \in S} w_{e}$.

Preliminaries

For $w_{e} \sim D_{e}, D=\times_{e \in E} D_{e}, w \in \mathbb{R}_{\geq 0}^{|E|}$, we define $\operatorname{OPT}(w)=\arg \max _{S \in \mathrm{~F}} \sum_{e \in S} w_{e}$.
With abuse of notation, our additive (for this talk) weight function is $w(S):=\sum_{e \in S} w_{e}$.
We denote by $f_{\mathrm{F}}(w):=w(\mathrm{OPT}(w))$

$$
a_{A L G}(w):=w(\operatorname{ALG}(w))
$$

Preliminaries

For $w_{e} \sim D_{e}, D=\times_{e \in E} D_{e}, w \in \mathbb{R}_{\geq 0}^{|E|}$, we define $\operatorname{OPT}(w)=\arg \max _{S \in \mathrm{~F}} \sum_{e \in S} w_{e}$.
With abuse of notation, our additive (for this talk) weight function is $w(S):=\sum_{e \in S} w_{e}$.

$$
\text { We denote by } \begin{array}{ll}
& f_{\mathrm{F}}(w):=w(\operatorname{OPT}(w)) \\
& a_{A L G}(w):=w(\operatorname{ALG}(w))
\end{array} .
$$

Now the objective is $\operatorname{EoR}(\mathrm{F}, D, \mathrm{ALG}):=\mathbb{E}\left[\frac{a(w)}{f(w)}\right] \Rightarrow \operatorname{EoR}(\mathrm{F}):=\inf _{D} \sup _{A L G} \mathbb{E}\left[\frac{a(w)}{f(w)}\right]$.

Preliminaries

For $w_{e} \sim D_{e}, D=\times_{e \in E} D_{e}, w \in \mathbb{R}_{\geq 0}^{|E|}$, we define $\operatorname{OPT}(w)=\arg \max _{S \in \mathrm{~F}} \sum_{e \in S} w_{e}$.
With abuse of notation, our additive (for this talk) weight function is $w(S):=\sum_{e \in S} w_{e}$.
We denote by $f_{\mathrm{F}}(w):=w(\mathrm{OPT}(w))$

$$
a_{A L G}(w):=w(\operatorname{ALG}(w))
$$

Now the objective is $\operatorname{EoR}(\mathrm{F}, D, \mathrm{ALG}):=\mathbb{E}\left[\frac{a(w)}{f(w)}\right] \Rightarrow \operatorname{EoR}(\mathrm{F}):=\inf _{D} \sup _{A L G} \mathbb{E}\left[\frac{a(w)}{f(w)}\right]$.
Analogously: $\operatorname{RoE}(\mathrm{F}):=\inf _{D} \sup _{A L G} \frac{\mathbb{E}[a(w)]}{\mathbb{E}[f(w)]}$ and $\mathrm{PbM}(\mathrm{F}):=\inf _{D} \sup _{A L G} \operatorname{Pr}[a(w)=f(w)]$.

Single-choice PI: EoR = PbM

Single-choice PI: EoR = PbM

In fact, the statement says sth stronger:

Thm : For each product distr. D, we can construct a new product distr. D^{\prime} for which EoR is abritrarily close to the PbM of the original distribution.

Single-choice Pl: EoR = PbM

In fact, the statement says sth stronger:

Thm : For each product distr. D, we can construct a new product distr. D^{\prime} for which EoR is abritrarily close to the PbM of the original distribution.

Corollary: The gap between RoE and EoR is at least $2 / e$, since

$$
\operatorname{RoE}(\mathrm{F})=\frac{1}{2}>\frac{1}{e}=\operatorname{EoR}(\mathrm{F}) \text { for fixed order. }
$$

Reduction RoE \rightarrow EoR : some tools

Reduction RoE \rightarrow EoR : some tools

We define the threshold $\operatorname{Pr}\left[\tau \geq \max _{e \in E} w_{e}\right]=\gamma \in(0,1)$.

Reduction RoE \rightarrow EoR : some tools

$$
\text { We define the threshold } \operatorname{Pr}\left[\tau \geq \max _{e \in E} w_{e}\right]=\gamma \in(0,1) \text {. }
$$

For events $\mathscr{E}_{0}:=\left\{\forall e \in E: w_{e} \leq \tau\right\} \quad$ we have $\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma$

$$
\mathscr{E}_{1}:=\left\{\exists!e \in E: w_{e}>\tau\right\} \quad \text { we have } \quad \operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
$$

Reduction RoE \rightarrow EoR : some tools

$$
\text { We define the threshold } \operatorname{Pr}\left[\tau \geq \max _{e \in E} w_{e}\right]=\gamma \in(0,1) \text {. }
$$

For events

$$
\begin{array}{ll}
\mathscr{E}_{0}:=\left\{\forall e \in E: w_{e} \leq \tau\right\} \\
\mathscr{E}_{1}:=\left\{\exists!e \in E: w_{e}>\tau\right\}
\end{array} \quad \text { we have } \quad \begin{aligned}
& \operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma \\
& \operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
\end{aligned}
$$

Truncated distr. $\bar{D}_{e}:=D_{e \mid w_{e} \leq \tau}$.
Observation: $\bar{D} \Leftrightarrow D \mid \mathscr{E}_{0}$.

Reduction RoE \rightarrow EoR : some tools

We define the threshold $\operatorname{Pr}\left[\tau \geq \max _{e \in E} w_{e}\right]=\gamma \in(0,1)$.

For events

$$
\begin{array}{ll}
\mathscr{E}_{0}:=\left\{\forall e \in E: w_{e} \leq \tau\right\} \\
\mathscr{E}_{1}:=\left\{\exists!e \in E: w_{e}>\tau\right\}
\end{array} \quad \text { we have } \begin{aligned}
& \operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma \\
& \operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
\end{aligned}
$$

Truncated distr. $\bar{D}_{e}:=D_{e \mid w_{e} \leq \tau} . \quad \underline{\text { Observation: }} \bar{D} \Leftrightarrow D \mid \mathscr{E}_{0}$.

Useful Lemma : $f(w) \leq f(\bar{w})+\sum_{e \in E} w_{e} \cdot 1\left[w_{e}>\tau\right]$.

Reduction RoE \rightarrow EoR : our algorithm

Reduction RoE \rightarrow EoR : our algorithm

Idea: Case distinction when prophet's value comes from a small or a large number of boxes.

Reduction RoE \rightarrow EoR : our algorithm

Idea: Case distinction when prophet's value comes from a small or a large number of boxes.

Assumption:We have $\mathrm{ALG}_{R o E}$ for which $\mathbb{E}\left[a(w) \mid \mathscr{E}_{0}\right] \geq \alpha \cdot \mathbb{E}\left[f(w) \mid \mathscr{E}_{0}\right]$.

Reduction RoE \rightarrow EoR : our algorithm

Idea: Case distinction when prophet's value comes from a small or a large number of boxes.

Assumption:We have $\mathrm{ALG}_{R o E}$ for which $\mathbb{E}\left[a(w) \mid \mathscr{E}_{0}\right] \geq \alpha \cdot \mathbb{E}\left[f(w) \mid \mathscr{E}_{0}\right]$.
Parameters: $\gamma \in(0,1), c>0$.
Output: Feasible set ALG(w).

Reduction RoE \rightarrow EoR : our algorithm

Idea: Case distinction when prophet's value comes from a small or a large number of boxes.

Assumption:We have $\mathrm{ALG}_{R o E}$ for which $\mathbb{E}\left[a(w) \mid \mathscr{E}_{0}\right] \geq \alpha \cdot \mathbb{E}\left[f(w) \mid \mathscr{E}_{0}\right]$.
Parameters: $\gamma \in(0,1), c>0$.
Output: Feasible set ALG(w).
If $\mathbb{E}[f(\bar{w})] \leq c \cdot \tau$ then:
"Catch the superstar"
else:
"Run the Combinatorial Algorithm"

Analysis of RoE-to-EoR algo: "Catch the superstar"

Analysis of RoE-to-EoR algo: "Catch the superstar"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ not too big, then imagine that few boxes contribute the most.

Analysis of RoE-to-EoR algo: "Catch the superstar"'

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ not too big, then imagine that few boxes contribute the most.
Count contribution only from the cases for which exactly one $w_{e} \geq \tau$ (i.e., superstar element). Ignore other cases.

Analysis of RoE-to-EoR algo: "Catch the superstar'"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ not too big, then imagine that few boxes contribute the most.
Count contribution only from the cases for which exactly one $w_{e} \geq \tau$ (i.e., superstar element). Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
$$

Analysis of RoE-to-EoR algo: "Catch the superstar"'

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ not too big, then imagine that few boxes contribute the most.
Count contribution only from the cases for which exactly one $w_{e} \geq \tau$ (i.e., superstar element). Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
$$

If we catch the (unique) superstar and stop, we recover constant fraction $\Lambda(c)$ of $f(w)$.

Analysis of RoE-to-EoR algo: "Catch the superstar"'

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ not too big, then imagine that few boxes contribute the most.
Count contribution only from the cases for which exactly one $w_{e} \geq \tau$ (i.e., superstar element). Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{1}\right] \geq \gamma \log \left(\frac{1}{\gamma}\right)
$$

If we catch the (unique) superstar and stop, we recover constant fraction $\Lambda(c)$ of $f(w)$.

Then, for Case 1: $\mathbb{E}\left[\frac{a(w)}{f(w)}\right] \geq \operatorname{Pr}\left[\mathscr{E}_{1}\right] \cdot \Lambda(c)=O(1)$.

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds τ. Ignore other cases.

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds τ. Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma
$$

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds τ. Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma
$$

Technical ingredient: For every $\tau>0$, the function f / τ restricted to $[0, \tau]^{|E|}$ is self-bounding

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds. τ. Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma
$$

Technical ingredient: For every $\tau>0$, the function f / τ restricted to $[0, \tau]^{|E|}$ is self-bounding
Sharp concentration around its expectation! [Boucheron, Lugosi, Massart '00]

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds. τ. Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma
$$

Technical ingredient: For every $\tau>0$, the function f / τ restricted to $[0, \tau]^{|E|}$ is self-bounding
Sharp concentration around its expectation! [Boucheron, Lugosi, Massart '00]
Then proof proceeds in two high-level steps:
I. UB value of ex-post OPT with high enough (constant) probability.
2. LB expected value of $\mathrm{ALG}_{\text {RoE }} \mid$ ex-post OPT not too large.

Analysis of RoE-to-EoR: "Run the Combinatorial algorithm"

If "normalized" OPT $\mathbb{E}[f(\bar{w})]$ is big, then imagine that many boxes contribute to it.
Count contribution only when no w_{e} exceeds τ. Ignore other cases.

$$
\operatorname{Pr}\left[\mathscr{E}_{0}\right]=\gamma
$$

Technical ingredient: For every $\tau>0$, the function f / τ restricted to $[0, \tau]^{|E|}$ is self-bounding
Sharp concentration around its expectation! [Boucheron, Lugosi, Massart '00]
Then proof proceeds in two high-level steps:
I. UB value of ex-post OPT with high enough (constant) probability.
2. LB expected value of $\mathrm{ALG}_{R o E} \mid$ ex-post OPT not too large.

$$
\text { All in all, for Case 2: } \mathbb{E}\left[\frac{a(w)}{f(w)}\right] \geq \operatorname{Pr}\left[\mathscr{E}_{0}\right] \cdot \alpha \cdot \Gamma(k, \delta)=O(1) .
$$

What's the best we can hope for the ex-post opt ?

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No $O(1)$ - approximation with $(1-\varepsilon)$ prob.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1 / 2 \\
\frac{1}{\varepsilon}, \text { w.p. } 1 / 2
\end{array}\right.
$$

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No $O(1)$ - approximation with $(1-\varepsilon)$ prob.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1 / 2 \\
\frac{1}{\varepsilon}, \text { w.p. } 1 / 2
\end{array}\right.
$$

No algo can do $>\varepsilon$-approx.
with prob. > 1/2.

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No $O(1)$ - approximation with $(1-\varepsilon)$ prob.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1 / 2 \\
\frac{1}{\varepsilon}, \text { w.p. } 1 / 2
\end{array}\right.
$$

No algo can do $>\varepsilon$-approx. with prob. $>1 / 2$.

No (1- ε) - approximation with $O(1)$ prob.

For each pair: $w_{1, i}=1 \quad w_{2, i}=\left\{\begin{array}{l}0, \text { w.p. } 1 / 2 \\ 2, \text { w.p. } 1 / 2\end{array}\right.$

What's the best we can hope for the ex-post opt ?

Observation: Our reduction achieves an $O(\alpha)$ - approximation of the ex-post OPT with constant probability (independent of α).

Maximizing the EoR implies the above and is the best we can achieve (up to constant terms).

No $O(1)$ - approximation with $(1-\varepsilon)$ prob.

$$
w_{1}=1 \quad w_{2}=\left\{\begin{array}{l}
\varepsilon, \text { w.p. } 1 / 2 \\
\frac{1}{\varepsilon}, \text { w.p. } 1 / 2
\end{array}\right.
$$

No algo can do $>\varepsilon$-approx. with prob. $>1 / 2$.

No (1- ε) - approximation with $O(1)$ prob.

For each pair: $w_{1, i}=1 \quad w_{2, i}=\left\{\begin{array}{l}0, \text { w.p. } 1 / 2 \\ 2, \text { w.p. } 1 / 2\end{array}\right.$
For $(1-\varepsilon)$ - approx. need to guess max
in $>2 / 3$ pairs \rightarrow arbitrarily small prob.

Extensions and observation

Extensions and observation

- The reductions hold for any arrival order (random [EHLM 'I7], free [Yan 'I I], etc.)

Extensions and observation

- The reductions hold for any arrival order (random [EHLM 'I7], free [Yan 'I I], etc.)

O They can be adjusted (with worse constants) to scenarios where we have a single sample from each distribution.

Extensions and observation

- The reductions hold for any arrival order (random [EHLM 'I7], free [Yan 'I I], etc.)
- They can be adjusted (with worse constants) to scenarios where we have a single sample from each distribution.
- We can extend the same techniques up to XOS weight functions (again, losing an extra constant factor).

Conclusion \& outlook

Conclusion \& outlook

o We propose the EoR as a measure of performance for Pls, motivated by risk-averse decision-makers.

Conclusion \& outlook

- We propose the EoR as a measure of performance for Pls, motivated by risk-averse decision-makers.
o For every downward-closed feasibility constraint, arrival order, and XOS weight functions, we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Conclusion \& outlook

o We propose the EoR as a measure of performance for Pls, motivated by risk-averse decision-makers.
o For every downward-closed feasibility constraint, arrival order, and XOS weight functions, we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Open Questions:

- RoE and EoR have at least a (2/e) - gap. What's the tight factor ?

Conclusion \& outlook

o We propose the EoR as a measure of performance for PIs, motivated by risk-averse decision-makers.
o For every downward-closed feasibility constraint, arrival order, and XOS weight functions, we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Open Questions:

- RoE and EoR have at least a (2/e) - gap. What's the tight factor ?
o Is it maybe always $\operatorname{RoE}(\mathrm{F}) \geq \operatorname{EoR}(\mathrm{F})$?

Conclusion \& outlook

- We propose the EoR as a measure of performance for Pls, motivated by risk-averse decision-makers.
o For every downward-closed feasibility constraint, arrival order, and XOS weight functions, we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Open Questions:

- RoE and EoR have at least a (2/e) - gap. What's the tight factor ?
- Is it maybe always $\operatorname{RoE}(\mathrm{F}) \geq \operatorname{EoR}(\mathrm{F})$?
- Can we apply similar ideas to online minimization problems ?

Note: [Garg, Gupta, Leonardi, Sankowski '08] briefly discuss EoR for the online Steiner tree.

Conclusion \& outlook

o We propose the EoR as a measure of performance for Pls, motivated by risk-averse decision-makers.
o For every downward-closed feasibility constraint, arrival order, and XOS weight functions, we establish a two-way blackbox reduction: RoE and EoR are a constant factor apart.

Open Questions:

- RoE and EoR have at least a (2/e) - gap. What's the tight factor ?
- Is it maybe always $\operatorname{RoE}(\mathrm{F}) \geq \operatorname{EoR}(\mathrm{F})$?
- Can we apply similar ideas to online minimization problems ?

Note: [Garg, Gupta, Leonardi, Sankowski '08] briefly discuss EoR for the online Steiner tree.

- What can we say when we have more samples from each distribution ?

Thank you for your attention!

