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Applied Probability / Statistics: Optimal Stopping 
MS / OR: Markov Decision Processes 
Game Theory: Stochastic Games (strategic interactions)

Sequential Decision Making under uncertainty is a fundamental problem that bridges several areas.

Many applications in economics and management:

Pricing in e-commerce
Search Theory
Resource Allocation 
Finance
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when he decided to interview eleven candidates to find his second wife.
Arthur Cayley in 1875 posed the following problem:                                                             
There is a lottery with  available tickets, each with a hidden value. A person can draw a ticket, 
observe the value, and decide whether to draw another ticket. She always receives the value of the 
last ticket drawn, and she can draw at most  tickets. If the hidden values come from a known 
probability distribution, what is the expected reward of the player?

n

k

A very old problem

Problem seems to be forgotten until…

Moser in 1956 revisits the problem for the special case of i.i.d.  .X1, X2, …, Xn ∼ U(0,1)
He solves the limit version for  using dynamic programming.n
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Secretary problem Prophet inequality

Adversarial values
Random order
Objective: max Pr[pick the highest value]

Values from known distributions
Adversarial order
Objective:   (stop at )   max 𝔼[Xt] ≥ c ⋅ 𝔼 [max Xi] t
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It can be achieved by setting a single threshold  and accepting the first value that exceeds it [Samuel-
Cahn ’84] (also [Kleinberg, Weinberg ’12]).

T
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Online algorithms with samples
Prophet inequality

Initiated by [Azar, Kleinberg, Weinberg ’14].
If the distributions are unknown, just one sample from each distribution suffices to obtain the 
optimal guarantee of ! [Rubinstein, Wang, Weinberg ’20]1/2
Values drawn i.i.d. from an unknown distribution [Correa, Dütting, Fischer, Schewior ’19; RWW ‘20]
Random order (“prophet secretary”), one sample from each distribution [Correa, Cristi, Epstein, 
Soto ’20; Kaplan, Naori, Raz ’20].

Secretary (or secretary-like)

A fraction  of the values is sampled  [Kaplan, Naori, Raz ’20].
General model that also captures secretary with samples [Dütting, Lattanzi, Paes Leme, Vassilvitskii ’21].

h
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Random order, values i.i.d. from a known distribution:  Algorithm that picks the max with prob 

 and this is best possible. [Gilbert, Mosteller ’66]γ ≈ 0.5801
Random order, independent values from known distributions: Multi-threshold strategy that picks the 
max with prob at least . [Nuti ’20; Esfandiari, Hajiaghayi, Lucier, Mitzenmacher ‘20]γ
Adversarial order, again independent values again from known distributions: Single-threshold strategy 
that picks the max with probability  and this is tight. [Allart, Islas ’15]1/e

Question: Can we design a model which nicely interpolates between the classic secretary (where there is no 
additional information) and drawing values from fully known distribution(s)?
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 adversarial values 

Each value is sampled independently with probability .

We get the set of samples  and the sampling probability .

The set of non-sampled values  is presented online in the order dictated by .
Objective: Max the prob of picking the maximum value in .

n v1, v2, ⋯, vn

p
S p

V σ
V

AOS :  is adversarialp σ

The problem comes in two versions:

ROS :  is a uniform random permutationp σ
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Our results
We obtain best possible algorithms for AOS  and ROS  for any value of .p p p
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Last zero problem
Adversary chooses an integer , unknown to us.  n
Referee writes on each of the  cards  w.p.  and  w.p. .n 1 p 0 1 − p
Referee tells us the total number of s and the probability .1 p
Cards are revealed to us one by one in the order of the deck.
Goal: We win if we stop at the last .0

We will show that we cannot do better than  for any length .1/4 n

    p = 1/2 6 ×

END
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Conflict graph 
Observation: If we stop in some sequence, we also need to stop in other sequences with the same “prefix”.

Algorithm: Select sequences to win.
Algo can select only one sequence along each path.
Cannot keep selecting strictly more than .1/4
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Overview of the proof

Bound for deterministic algos
for .p = 1/2

 Increasing seq, unknown length , 
actual values irrelevant.

n
Bound for deterministic algos

and unknown .n

General bound for unknown .n GENERAL 
BOUNDCombinatorial 

arguments about the 
conflict graph

…
…
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2. If  let , otherwise let .τi < p vi ∈ S vi ∈ V
3. Values in  are revealed in order of  values.V τi

: Fix decreasing sequence of thresholds. Accept value  if largest in  so far and larger than 
the -th largest sample if .
ALGt vi V

k τi ∈ [tk, tk+1]
The success guarantee of  is a separable and concave optimization problem. We can solve 
for the optimal sequence .

ALGt
t*

Idea for proving best possible: Any optimal strategy can be seen as a decreasing sequence of 
thresholds.



Thank you for watching!


