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1 Appendix for Section 3
1.1 Intuition behind threshold for AOSp

We briefly show the intuition behind the choice of k in the k-max algorithm for AOSp. For the analysis,
assume that the samples are sorted in non-increasing order s1 ≥ s2 ≥ · · · ≥ sr. An algorithm A, given input
(S, p), draws t ∼ D and sets a threshold τ = st. Here, t ∈ [r] and D is a probability distribution over the
indices of the samples. Thus, A succeeds at least in the instances where exactly one of the t largest values
of the adversarial input ends up in the online set and the (t + 1)th largest ends up in the sample set. Since
the coin flips are independent, we obtain

Pr[A stops at max
i

vi] = lpl(1 − p), where l = Et∼D[t].

To find the maximizer of the function f(p, l) = lpl(1 − p), consider its derivative:

∂f(p, l)
∂l

= ∂(lpl − lpl+1)
∂l

= 0 ⇔ l = − 1
ln p

.

Substituting this value for l into f(p, l) yields an upper bound f1(p) = p−1
log p · p−1/ log p. To turn it into a

practical algorithm, we wish to have an integer value of l without a logarithmic term. The latter can be fixed
by taking an approximation. Taking the Maclaurin series of ln(1 + x), substituting p = x + 1 and dropping
the higher order terms yields

ln p =
∞∑

n=1
(−1)n−1 (p − 1)n

n
≈ p − 1 ⇔ − 1

ln p
≈ 1

1 − p
, p ∈ (0, 1) .

Substituting this value for l into f(p, l) yields a lower bound f2(p) = p1/(1−p). To get to an integer value,
we simply take the floor function of this expression and obtain the k-max algorithm as defined previously.

Let us be a bit more precise regarding the success guarantee after these modifications and show that it
interpolates between the two functions mentioned above. Because − 1

ln p is a maximizer of f , we see that
f
(

p,
⌊

1
1−p

⌋)
≤ f

(
p, − 1

ln p

)
. Second, f(p, l) is increasing for l ≤ − 1

ln p and decreasing in the rest of the

domain. Moreover, one can easily check that f
(

p, 1
1−p − 1

)
= f

(
p, 1

1−p

)
and 1

1−p − 1 < − 1
ln p ≤ 1

1−p for

p ∈ (0, 1). Finally, since it holds that 1
1−p − 1 <

⌊
1

1−p

⌋
≤ 1

1−p , we get f(p, 1
1−p ) ≤ f(p,

⌊
1

1−p

⌋
). Combining

all the above, we can conclude that f
(

p,
⌊

1
1−p

⌋)
≈ f

(
p, − 1

ln p

)
.
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1.2 Omitted proofs from Section 3.2.3
Proof of Lemma 2. Let I1 ≁ I2 be two instances in conflict. Consider a deterministic algorithm that succeeds
in I1, meaning, this algorithm stops at the position r of the last 0. Note that at any position j ≤ r, the
knowledge of the algorithm up to that point consists of ||I1||1 as well as I1[1, j]. Now run the same algorithm
on I2. Since the algorithm is deterministic and has the same information available at every point in time,
it must make the exact same decision at every j ≤ r. In particular, it stops at position r. However, since
||I2||1 = ||I1||1 but |I2| > |I1|, there must be a 0 after position r in I2, and the algorithm fails in I2.

Proof of Lemma 3. Let I1 ≁ I2 be two instances in conflict with sizes n1, n2 such that n1 < n2. Since they
are in conflict, ||I2||1 = ||I1||1 and I1[1, r] = I2[1, r], where r is the position of the last 0 of I1. Let s > r be
the last 0 of I2. Consider the instance I3 such that I3[1, s − 1] = I2[1, s − 1] and I3[s, n2 − 1] = I2[s + 1, n2],
i.e., I3 is the instance I2 without its last 0.

If I3 = I1, the proof is done. Otherwise, observe that ||I3||1 = ||I2||1 = ||I1||1 and that I1[1, r] = I3[1, r],
thus, I3 ≁ I1. Also, I2[1, t] = I3[1, t] where t ∈ [r, s) is the position of the last 0 of I3, and therefore also
I3 ≁ I2.

For an instance I containing at least one 0, define the operation I ⊖ 0 that maps I to a new instance
I ′ which is equal to I with its last 0 removed, as above. Starting with I2, we can create a sequence of
d := n2 − n1 instances with Ii+1 = Ii ⊖ 0 such that Ii ≁ I1 and Ii ≁ I2 for all i ∈ [1, d + 2]. This yields the
sequence I2, I3, . . . , Id+1, Id+2 = I1, whose instances form a monotone path in the conflict graph, proving
one direction. The other direction of the proof follows similarly.

Proof of Lemma 5. Let I be an instance of size n. By Lemma 4, an instance I ′ of size n + 1 is in conflict
with I (and therefore a child of I) if it contains a 0 anywhere after the last 0 of I. Therefore, if I ends in 0,
the node corresponding to this instance has degree one, since the new 0 can only be inserted in one place.
Half of the instances of size n end in 0, so 2n−1 nodes have degree one. Similarly, we see that a quarter of
the instances of size n end in 01, i.e., 2n−2 nodes have degree two. In general, for every i there are 2n−i

instances with suffix 01i−1, and therefore, 2n−i nodes have degree i.
A node v with degree k has a suffix 01k−1. Any child w of v has one additional 0 after the last 0 of v.

If this additional 0 occurs at the very end, the suffix of w is 0 so deg(w) = 1. If this additional 0 occurs
directly before the last 1, the suffix of w is 01 so deg(w) = 2. In general, inserting the additional 0 directly
before the i-th 1 from the end, a child is created with degree i.

Proof of Lemma 6. The proof of Lemma 5 reveals that the instances of degree one are exactly these which
have a suffix of 0. Summing over their weights will yield w1 = 1 − p, which is the probability that the last
bit of an instance is equal to 0. In general, a node of degree i ends in 01i−1. Accordingly, the probability
that an instance with this suffix results from the sampling process is wi = pi−1(1 − p).

Now consider an instance I1 with |I1| = n and deg(I) = i. Then I1 has suffix 01i−1. Now consider an
instance I2 ≁ I1 with |I2| = n+1 and deg(I2) = j for some j ≤ i. Since I2 ≁ I1, I2[1, n−i+1] = I1[1, n−i+1],
since the last 0 of I1 is at position n − i + 1. In particular, compared to I1 the suffix 1i−1 contains one
additional 0 in I2. Therefore, I2 has suffix 01i−j01j−1.

Now consider the set of all instances that have the form of instance I1. Because of the suffix 01i−1, the
weight of these instances can be computed as pi−1(1 − p). On the other hand, the weight of all instances
that have the form of the instance I2 can be computed as (1 − p)pi−j(1 − p)pj−1 = pi−1(1 − p)2.

Proof of Lemma 7. By Lemma 3, any two instances that are in a monotone path are in conflict, and by
Lemma 2 an algorithm can win in at most one instance of a pair of conflicting instances.
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1.3 Omitted proofs from Section 3.2.4
Proof of Lemma 8. We adapt the proof of Lemma 2 in a straightforward manner. Let I1 ≁ I2 be two
instances in conflict. Consider a randomized algorithm that succeeds in I1, meaning, this algorithm stops at
the position r of the last 0. Note that at any position j ≤ r, the knowledge of the algorithm up to that point
consists of ||I1||1 as well as I1[1, j]. Now run the same algorithm on I2 with the same random seed. Since
the algorithm has the same random seed and has the same information available at every point in time, it
must make the exact same decision at every j ≤ r with the exact same probability. In particular, it stops at
position r with probability q. However, since ||I2||1 = ||I1||1 but |I2| > |I1|, there must be a 0 after position
r in I2, and the algorithm can only reach this last 0 of I2 with probability at most 1 − q, and therefore,
succeed in I2 with probability no more than 1 − q.

Proof of Lemma 9. This follows immediately from Lemma 5. It implies that v and w have children with the
same degree distribution and the same holds for all their descendants.

Proof of Lemma 10. Consider the instances I1 and I2 with |I1| = |I2| and an algorithm A with I1 ∈ AS

but I2 ̸∈ AS . Since I1 ∈ AS , its descendants are removed. On the other hand, as I2 is neither selected nor
removed, it is possible for A to select some nodes in its subtree T (I2).

Let I be the instance of I1 and I2 with highest degree (breaking a tie arbitrarily) and I ′ be the other
instance. Now consider the subtree T consisting of I, its deg(I ′) children, and their descendants, and let T ′

be the subtree of I ′. Observe that degT (I) = deg(I ′), and hence, as observed in Lemma 9, T and T ′ are
isomorphic. Since |I1| = |I2|, they are not neighbours, and moreover, since any node has at most one parent,
T and T ′ are also disjoint.

Let φ be the isomorphic mapping between T and T ′ and let U = AS ∩ T ′. Now consider the algorithm
B with BS = AS ∪ {I2} ∪ φ(U) \ ({I1} ∪ U). By construction, for every given size n, the nodes that both
algorithms select carry the same weight, so the success guarantees are equal.

Proof of Lemma 11. Consider an algorithm A that does not follow the small degrees first strategy. Then
there exists an instance I1 ∈ AS and an instance I2 ̸∈ AS with |I2| = |I1| and deg(I2) < deg(I1).

Consider the part T ′(I1) of the subtree T (I1) that consists of I1 and its deg(I2) children of smallest
degree and their subtrees. By the structure given by Lemma 5, T ′(I1) is isomorphic to T (I2). Then the
same swapping argument as in the proof of Lemma 10 between T ′(I1) and T (I2) exhibits another algorithm
with the same success guarantee that does follow the small degrees first strategy.

Proof of Claim 1. We prove the claim by induction. For the base case n = N0 we have ρN0 = 1/4 + ε, which
corresponds to the formula of the claim. Now suppose that the lemma holds for some size n + t − 1, so
ρn+t−1 = ( 1

4 + ε) ·
∑t−1

i=1 1/2i−1. We first determine the fraction of removed nodes in the next size n + t.
Since each node of degree 1 removes one node of the next size, the number of nodes removed for size n + t
is the same. However, as there are twice as many instances in total in size n + t, the fraction is half this
number, namely ( 1

4 + ε) ·
∑t−1

i=1 1/2i. The fraction of selected nodes is 1/4 + ε, thus in total the cover ratio
becomes

ρn+t =
(

1
4 + ε

)
·

(
t−1∑
i=1

1
2i

+ 1
)

=
(

1
4 + ε

)
·

(
t∑

i=1

1
2i−1

)
.
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Proof of Claim 2. Let us consider a size n where ρn > 1/2, say ρn = 1/2 + δ for some δ > 0. Then for size
n + 1, first, the 1/2-fraction of nodes of size n remove 1/4 of the nodes of size n + 1 (since all these nodes
have degree 1). Then, by Lemma 5, the δ-fraction of degree 2 nodes remove one instance of degree 1 and
one instance of degree 2 in the next size. That is, in size n + 1, a (1/4 + δ/2)-fraction of the degree 1 nodes
and a δ/2-fraction of the degree 2 nodes are removed in total.

The algorithm must now select a (1/4 + ε)-fraction of the nodes that have not been removed. Following
the small degrees first strategy, the algorithm chooses the remaining 1/4 − δ/2-fraction of degree 1 nodes,
and a δ/2 + ε-fraction of the degree 2 nodes. In total, ρn+1 = 1/2 + δ + ε, and the claim follows.

Putting everything together, we restate and prove Proposition 3.

Proposition 3. For the last zero problem with p = 1/2, no deterministic size-oblivious algorithm can have
a better success guarantee than the k-max algorithm, even if we consider only instances of size larger than
N0, for any N0.

Proof. Claim 2 gives ρi+1 ≥ ρi + ε for every stap i in the second phase of the algorithm. Therefore, there
exists some t such that ρt > 3/4 − ε. Therefore, the algorithm cannot select an 1/4 + ε fraction of the nodes
of size t. Therefore, no algorithm can achieve a success guarantee of 1/4 + ε for any ε > 0.

1.4 Generalization to any value of p

In this subsection, we generalize the previous results beyond the case of size-oblivious deterministic algorithms
for p = 1/2. This case is a bit more complicated, because when p ̸= 1/2 the instances of the same size do not
have the same probability of occurring. For example, for p = 3/4, succeeding in the instance 1k0 contributes
more to its performance for that instance size than to succeed in the instance 0k+1, as the first has probability
(3/4)k(1/4) to occur and the second has probability (1/4)k+1. Recall that we associated these probabilities
as weights to the nodes in the conflict graph (cf. Definition 10).

Building on the intuition of the previous section, but using more sophisticated techniques, we show what
is the best possible success guarantee that any algorithm can achieve. We then link our k-max algorithm
for AOSp to the conflict graph of the last zero problem, such that we finally prove the main theorem of this
section: The k-max algorithm, although very simple, is optimal for AOSp for all values of p. We first focus
on deterministic algorithms and prove the optimality of the k-max algorithm there. Finally, we show how
to adapt the proof to randomized algorithms.

1.4.1 Local operators and average performance.

The main reason the proof techniques for the case p = 1/2 need to be adapted is the fact that instances of a
given size do not have the same weight anymore, and therefore, the swapping argument used in Lemma 10
and Lemma 11 no longer holds. Thus, we transform a strategy using moves that select and deselect nodes
from instances of different sizes: local operators. For a given set of selected nodes (i.e., an algorithm), these
local operators might increase the weight of selected nodes for a specific size but decrease it for another size,
yet positively contribute to the success guarantee of the algorithm in the end. To keep track of this, we
introduce the notion of the average performance of an algorithm. With a window [n, n + t] we mean the set
of instances of size i such that n ≤ i ≤ n + t for some t ≥ 1.

Definition 16. Consider an algorithm A for the last zero problem that selects the node set AS . The average
performance πA,[n,n+t] of A in the window [n, n + t] is the average of the performance of A in this window,
i.e.,

πA,[n,n+t] = 1
t + 1

∑
i∈[n,n+t]

perf(A, i) = 1
t + 1

∑
i∈[n,n+t]

∑
v∈Ai

S

w(v)

 .

If the window is clear from the context, we drop this subscript and simply write πA.
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We will show that there exists a set of local operators that can be used to increase the average performance
of an algorithm. Informally, the proof is then completed as follows. It turns out that the k-max algorithm
applied to the conflict graph is very consistent, in the sense that it selects the same total weight for every
size. This means that its average performance is approximately equal to the infimum of its performance for
every size (i.e., its success guarantee). Therefore, if an algorithm would have a larger success guarantee than
the k-max algorithm, it would also exceed the average performance in every window. In this section, we
show that the latter is a contradiction.

We define the following two local operators.

Definition 17. Consider an algorithm A for the last zero problem and its set AS of selected nodes and
AR of removed nodes. Consider the window [n, n + t]. Let c(v) and d(v) denote the set of children and
descendants of a given node v, respectively.

The high-degree local operator can be applied if there exists a node v ∈ AS with deg(v) > 1/(1 − p) and
|v| ∈ [n, n + t − 1]. It transforms A into another algorithm A′ that selects A′

S = AS ∪ c(v) \ {v} and removes
A′

R = AR \ c(v).
The low-degree local operator can be applied if there exists a v ̸∈ AS ∪ AR with deg(v) ≤ 1/(1 − p) and

|v| ∈ [n, n + t − 1]. It transforms A into another algorithm A′′ that selects A′′
S = AS ∪ {v} \ d(v) and removes

A′′
R = AR ∪ d(v).

The next lemma proves that these local operators improve the average performance of an algorithm in
the window. We say that an algorithm is valid if it selects at most one node along each monotone path in
the conflict graph.

Lemma 20. Consider a valid deterministic algorithm A. Applying the high-degree local operator or the
low-degree local operator to A on a window [n, n + t] yields a new valid algorithm A′ with πA′ ≥ πA.

Proof. It is clear that the new algorithm A′, obtained after applying any of the two local operators to an
algorithm A, is still valid. We prove that πA′ ≥ πA after applying these local operators.

Consider the high-degree local operator and a node v ∈ AS with deg(v) > 1/(1−p) and |v| ∈ [n, n+t−1].
After applying the operator, perf(A′, |v|) = perf(A, |v|) − w(v). By Lemma 6, the total weight of the
children of v equals deg(v)w(v)(1 − p) > w(v), since deg(v) > 1/(1 − p). Therefore, perf(A′, |v| + 1) >
perf(A, |v| + 1) + w(v) and indeed πA′ > πA.

Now consider the low-degree local operator and a window [n, n+t]. We will construct a reversed sequence
A0, A1, . . . , Aℓ of valid algorithms that starts at A′ = A0 and ends in A = Aℓ after some number of iterations
that we call ℓ. We will prove that πAi+1 ≤ πAi for all i ∈ {1, . . . , t − 1}. Since as a base πA0 ≤ πA′ is clearly
true, this shows in the end that indeed πA ≤ πA′ , which is what we need to prove.

Let v be the node the operator is applied on, so that v ̸∈ AS ∪ AR with deg(v) ≤ 1/(1 − p) and
|v| ∈ [n, n + t − 1]. For the remainder of this argument, consider only nodes in its subtree T (v). Consider
some fixed iteration i in which algorithm Ai transforms into algorithm Ai+1. Let Ui = (Ai)S \ AS be the
set of nodes that algorithm Ai selects but the original algorithm A does not. Let U ′

i ⊂ Ui be the subset of
nodes of Ui with minimum size si and let u ∈ U ′

i .
We will distinguish two cases. For the first case we will show that (i) |Ui+1| < |Ui|, while for the

second case we will show that (ii.a) si+1 > si, and otherwise, (ii.b) |U ′
i+1| < |U ′

i |. In other words, every
transformation of an algorithm Ai into an algorithm Ai+1 (i) either decreases the set of nodes that Ai selects
but A does not, or (ii.a) the minimum instance size in this set has increased, and otherwise at least (ii.b)
the subset of instances of minimum size of this set decreases.

If (ii.b) happens, at some point this subset will have cardinality 1, and then (ii.a) happens. So – interjected
with some iterations in which (ii.b) happens – either |Ui+1| < |Ui|, and otherwise the smallest instance size
in this set has increased. Since we do not modify instances outside of the interval [n, n + t], we can apply
this shrinking process only a finite number of times. This implies that in the end the set Uℓ will be empty
after some number of iterations ℓ. Indeed, this is the end of the sequence of algorithms since then Aℓ = A
by construction.

Let us discuss the two cases. For any node v let c(v) and d(v) denote the set of its children and its
descendants, respectively.

First, if AS ∩ d(u) = ∅, set (Ai+1)S = (Ai)S \ {u}. Then clearly πAi+1 ≤ πAi
. Observe moreover that

|Ui+1| < |Ui|.
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Otherwise, there exists a node u′ ∈ AS ∩ d(u). In this case set (Ai+1)S = (Ai)S ∪ c(u) \ {u}. Let
us compare Ai+1 to Ai. First observe that perf(A′, |u|) = perf(A, |u|) − w(u), but perf(A′, |u| + 1) =
perf(A, |u| + 1) +

∑
v∈c(u) w(v). Recall that each of the deg(u) children of u has a weight of w(u)(1 − p)

and that deg(u) ≤ deg(v) ≤ 1/(1 − p) (by Lemma 5). The total weight of the children of u is thus
deg(u)w(u)(1 − p) ≤ w(u). So, indeed, πAi+1 ≤ πAi . Observe moreover that the set of nodes U ′

i has
decreased by one. If |U ′

i | = 1 was true, the instances in U ′
i+1 are one size larger than the instances in Ui.

Otherwise, |U ′
i+1| < |U ′

i | for the same size.
In both cases πAi+1 ≤ πAi

and the inductive properties stated above hold. As argued above, this means
the procedure is finite and terminates after some number of iterations ℓ with Aℓ = A, and therefore, πA ≤ πA′ ,
completing the proof.

1.4.2 Fill-in strategy.

We introduced these local operators to prove that an algorithm called the fill-in stategy, denoted by F ,
has optimal average performance. The fill-in strategy for a window [n, n + t] scans the instance sizes from
n to n + t in increasing order, selects all the non-removed instances of degree up to

⌊
1

1−p

⌋
for each size

s ∈ [n, n + t − 1], and all the non-removed instances for instance size n + t. The following lemma follows
immediately from the local operators we defined, using a proof by contradiction.

Lemma 21. The fill-in strategy F has optimal average performance for any window [n, n + t], i.e., for all
size-oblivious algorithms A for the last zero problem and every window [n, n + t], it holds that πF,[n,n+t] ≥
πA,[n,n+t].

Proof. Consider an optimal algorithm A that is not the fill-in strategy F . There are three possibilities in
which A can be different from F .

In the first case, there exists a node v ̸∈ AS of size |v| ∈ [n, n + t − 1] with deg(v) ≤
⌊

1
1−p

⌋
. But in this

case, applying the low-degree operator on v to A yields a new algorithm A′ with πA′ > πA, which contradicts
the optimality of A.

In the second case, there exists a node v ̸∈ AS of size |v| ∈ [n, n + t − 1] with deg(v) >
⌊

1
1−p

⌋
. Now

we can apply the high-degree operator to strictly improve the average performance of A, and we have a
contradiction.

In the last case, there exists a node v ̸∈ AS ∪ AR of size |v| = n + t. But the algorithm A′ with
A′

S = As ∪ {v} has πA′ > πA, which is again a contradiction.

To prove the negative results of Theorem 2 it remains to show that the success guarantee of the fill-in
strategy F does not exceed the success guarantee of the k-max algorithm for AOSp. Therefore, we now
proceed to describe the k-max algorithm in the conflict graph.

1.4.3 The k-max algorithm in the conflict graph.

Recall that we can transform the k-max algorithm for AOSp to the last zero problem using the proof of
Proposition 1. This yields the following description of the k-max algorithm for the last zero problem: It
stops at the first 0 that arrives after it has seen the k last 1s. This means that in the conflict graph, it selects
all instances at which the last 0 is the only 0 after the k-th last 1. Denote the k-max algorithm for the last
zero problem by K for short.

To illustrate this, let p ∈ [1/2, 2/3) such that k =
⌊

1
1−p

⌋
= 2, so the k-max algorithm sets the second

largest sampled value as a threshold. Thus, in any instance of the last zero problem, K stops at the first 0
after the second-to-last 1. This implies that for any size n, it stops at the last 0 in the instances which end in
110 or 101. Indeed, these are the instances K selects in the conflict graph, and these correspond to the AOSp
instances in which the k-max algorithm stops at the online element with the maximum value. Similarly, for
p ∈ [2/3, 3/4), K stops at the last zero (i.e., succeeds) in all instances that end in 1110, 1101 or 1011, and
these form the set KS of selected instances in the conflict graph.

We analyze the dynamics of K in the conflict graph in the following lemma.
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Lemma 22. Consider instances of size n > k and consider the k-max algorithm K for the last zero problem,
starting at instance size k + 1 and iteratively considering instances of increasing size. For every size n > k,
Kn

S = {v ̸∈ KR : |v| = n, ||v||1 ≥ k, deg(v) ≤ k}.

Proof. For this proof define the m-cut suffix of an instance I for some value m as the last m bits in case
|I| ≥ m and as I otherwise.

Consider the conflict graph for n ≥ k + 1 suppose by contradiction that the lemma is false. There are
three cases. In the first case, there exists a node v ∈ KS with ||v||1 < k. In the second case, there exists
a node v ∈ KS with deg(v) > k. In the third case, there exists a node v ̸∈ (KS ∪ KR) with ||v||1 ≥ k and
deg(v) ≤ k.

In the first case, since there are less than k samples in the instance corresponding to v, the k-max
algorithm sets a threshold of zero and accepts the first online value. So it only succeeds in v if the first online
value is the maximum online value, i.e., v contains only one 0. Observe that ||v||1 < k means the instance
corresponding to the node contains strictly less than k 1s. But then |v| < k + 1, contradiction.

In the second case, note that a node v with deg(v) > k has a suffix consisting of one 0 followed by at
least k 1s. In such an instance, however, the k-max algorithm fails, so v ̸∈ KS . Contradiction.

In the third case, let U = {v : v ̸∈ KS , v ̸∈ KR, ||v||1 ≥ k, deg(v) ≤ k} and let v ∈ arg min|u|{u ∈ U}.
Denote d = deg(v) such that its suffix is 01d−1. Consider the k-cut suffix v′ of v and note that v′ contains
at least one 0. Now, as long as v′ contains more than one 0, remove its last 0. Consider the unique resulting
instance v′′ of this procedure. As its k-suffix contains exactly one 0, note that |v′′| ≥ ||v′′||1 + 1 ≥ k + 1.
Since both ||v′′||1 ≥ k and deg(v′′) ≤ k, and v was the smallest (in terms of size) such node that K did not
select or remove, we know v′′ ∈ KS or v′′ ∈ KR. But then as v is a descendant of v′′, we know in both cases
that v ∈ KR, contradiction.

With this lemma we can analyze the success guarantee of K. Indeed, this yields the same success guarantee
of kpk(1 − p) as the k-max algorithm for AOSp, as proved in Lemma 1.

Lemma 23. For every n ≥ N0 for some N0, perf(K, n) = (1 − p)kpk, where k =
⌊

1
1−p

⌋
.

Proof. For a set of nodes U let w(U) =
∑

u∈U w(u) be its total weight. We need to show w (Kn
S) = kpk(1−p)

for all n ≥ N0 where k = ⌊1/(1 − p)⌋. We do so by first computing w (Kn
R ∪ Rn ∪ Kn

S), where Rn = {v :
|v| = n, ||v||1 < k}. From this quantity we will subtract w (Kn

R ∪ Rn), which will give us w (Kn
S) as all three

sets are disjoint.
Lemma 22 shows that for every size n, Kn

R ∪ Kn
S = {v : |v| = n, ||v||1 ≥ k, deg(v) ≤ k}. Together with the

set of nodes Rn of norm less than k, we see that Kn
R ∪ Rn ∪ Kn

S = {v : |v| = n, deg(v) ≤ k}. Then

w (Kn
R ∪ Rn ∪ Kn

S) =
k∑

i=1
wi = (1 − p)

k−1∑
i=0

pi .

Consider all children v of nodes of size n that have degrees 1 up to k, together with the nodes of size n + 1
with norm less than k. In the latter case v ∈ Rn+1. In the former case the parent of v is in Kn

R ∪ Kn
S and

therefore v ∈ Kn+1
R . Therefore, Kn+1

R ∪ Rn+1 consists of all children of nodes of size n that have degrees 1
up to k. Recalling the degree structure from Lemma 5, we see that a selected instance of degree i has one
descendant of weight wij for all j = 1, . . . , i. Therefore,

w (Kn
R ∪ Rn) = w11 + (w21 + w22) + . . . + (wk1 + . . . + wkk)

= (1 − p)w1 + 2(1 − p)w2 + . . . + k(1 − p)wk

= (1 − p)
k∑

i=1
iwi = (1 − p)2

k−1∑
i=0

(i + 1)pi ,

and the instances of size n that will be selected by K have total weight

w (Kn
S) = w (Kn

R ∪ Rn ∪ Kn
S) − w (Kn

R ∪ Rn)

7
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= (1 − p)
[

k−1∑
i=0

pi − (1 − p)
k−1∑
i=0

(i + 1)pi

]

= (1 − p)
k−1∑
i=0

[1 − (i + 1)(1 − p)] pi

= (1 − p)
k−1∑
i=0

[
(i + 1)pi+1 − ipi

]
= (1 − p)kpk .

This completes the proof.

1.4.4 Connecting the fill-in strategy to the k-max algorithm.

Lemma 22 allows us to compare the performance of the fill-in strategy F to the performance of the k-max
algorithm for the last zero problem, K. In fact, they select almost the same nodes in the conflict graph.

Lemma 24. Consider a window [n, n + t].
If n > 1, then for every size s ̸∈ {n, n + t}, Fs

S = Ks
S. For sizes s ∈ {n, n + t}, Ks

S ⊂ Fs
S (i.e., K selects

a strict subset of the set of nodes selected by F).
If n = 1, then F1

S = K1
S as well.

Proof. First we prove that Kn
S is a strict subset of Fn

S . Suppose that both F and K start with size n > 1,
so Fn

R = Kn
R = ∅. Writing k = ⌊1/(1 − p)⌋, observe that Fn

S = {v : |v| = n, deg(v) ≤ k} and Kn
S = {v : |v| =

n, deg(v) ≤ k, ||v||1 ≥ k}, completing the proof.
We will now prove that for sizes n < s < n + t, Fs

S = Ks
S . It is clear that Ks

S ⊆ Fs
S . We prove Fs

S ⊆ Ks
S

by contradiction, so assume there exists a v ∈ Fs
S \ Ks

S , i.e., deg(v) ≤ k and ||v||1 < k. Without loss of
generality, assume that v ∈ arg min|u| {u ∈ Fs

S \ Ks
S}. We consider two cases: v has a parent w of size s − 1

or v has no parent.
In the first case, note that w ̸∈ FS . Otherwise, v ∈ FR and thus v ̸∈ FS , contradiction. Also note

that deg(w) ≤ k. Otherwise, w would have suffix 01d for d ≥ k, but then ||w||1 ≥ k and therefore
||v||1 ≥ ||w||1 ≥ k, contradiction. But if deg(w) ≤ k, F would select w unless it selected a node of
whom w is a descendant, and thus w ∈ FR. But then also v ∈ FR, contradiction.

In the second case, note that nodes without a parent are exactly the nodes that have at most one 0.
In the single instance that contains no 0s, F and K make the same decision by definition, so we restrict
ourselves to instances that contain exactly one 0. Since ||v|| ≤ k, the k-max strategy sets a threshold of 0
and succeeds, since the only 0 is the maximum online value. But then v ∈ S2, contradiction.

We wrap up the first part of the proof by considering the size s = n + t. Here, F selects all non-removed
nodes, while K selects all non-removed nodes v with deg(v) ≤ k and ||v||1 ≥ k. Observe that Ks

R = Fs
R

and the set of non-removed nodes contains nodes of degree more than k and norm less than k, so indeed
Ks

S ⊂ Fs
S .

Finally, if n = 1, both F and K select instance 0 and cannot succeed in instance 1, so in this case they
select exactly the same nodes also in the first size of the window.

Combining everything, the negative result of Theorem 2 for deterministic size-oblivious algorithms follows,
as πK,[n,n+t] ≥ πF,[n,n+t] − 2/(t + 1) and the latter term vanishes.

Theorem 2. Let k = ⌊1/(1 − p)⌋. The k-max algorithm achieves a guarantee of kpk(1 − p) for AOSp.
Furthermore, no algorithm can achieve a better success guarantee.

Proof of the negative result for size-oblivious deterministic algorithms. To prove the theorem, suppose by
contradiction that there exists a size-oblivious deterministic algorithm A with perf(A, n) ≥ kpk(1−p)+ε for
some ε > 0 for every size n (larger than some size N0) with k = ⌊1/(1−p)⌋. Let t > 2/ε−1 and consider the
window I = [N0, N0 + t]. Since the average performance is at least as good as the worst case performance,
πA,I ≥ kpk(1 − p) + ε.

8
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Consider K and F starting at size N0 and consider the window I. First, note that Lemma 24 implies
that perf(F , s) ≤ perf(K, s) + 1 for s ∈ {N0, N0 + t} and perf(F , s) = perf(K, s) for s ∈ (N0, N0 + t). So
πF,I ≤ πK,I + 2/(t + 1).

Lemma 23 argues that the performance of K is very consistent, in the sense that it selects the same total
weight for every size. Therefore, πK,I is arbitrarily close to kpk(1−p), since that is its worst case performance.
In particular, we can choose any δ > 0 such that πK,I ≤ kpk(1 − p) + δ and πF,I ≤ kpk(1 − p) + δ + 2/(t + 1).

Choosing δ < ε − 2/(t + 1) yields πF,I < πA,I . However, πF,I is optimal by Lemma 21. Therefore, this
is a contradiction since A cannot be better.

1.5 Generalization to randomized algorithms
In this subsection we adapt the above proof to randomized algorithms by generalizing Lemma 20 to the
randomized setting. The rest of the proof follows immediately from the same arguments as for deterministic
algorithms if in the definition of the average performance (cf. Definition 16) we multiply the weight of a node
by its selection probability, so extending this lemma suffices to extend the negative results to randomized
algorithms.

For a node v and a randomized algorithm A, let AS(v) and AR(v) be its selection probability and its
removed fraction (cf. Lemma 8), respectively. Recall that a node selected with probability AS(v) removes a
fraction AS(v) of its descendants.

For randomized algorithms, we define the following two local operators similar to Definition 17.

Definition 18. Consider a randomized algorithm A for the last zero problem and consider the window
[n, n + t]. Let c(v) and d(v) denote the set of children and descendants of a given node v, respectively.

The randomized high-degree local operator can be applied if there exists a node v with AS(v) > 0,
deg(v) ≤ 1/(1 − p) and |v| ∈ [n, n + t − 1]. It transforms A into another randomized algorithm A′ with
A′

S(v) = 0 and A′
R(w) = AR(w) + AS(v) for all w ∈ c(v).

The randomized low-degree local operator can be applied if there exists a node v with AS(v)+AR(v) < 1,
deg(v) ≤ 1/(1 − p) and |v| ∈ [n, n + t − 1]. Defining ε = 1 − AS(v) − AR(v) > 0, it transforms A into another
randomized algorithm A′′ with A′′

S(v) = AS(v) + ε, and AS(w) = 0 and AR(w) = 1 for all w ∈ d(v).

We say that a randomized algorithm valid if the sum of qs(v) over all vertices v of a monotone path in
the conflict graph is at most 1, for all monotone paths.

Lemma 25. Consider a valid randomized algorithm A. Applying the randomized high-degree local operator or
the randomized low-degree local operator to A on a window [n, n + t] yields a new valid randomized algorithm
A′ with πA′ ≥ πA.

Proof. For both local operators, the claim that applying them does not decrease the average performance
follows from the arguments of Lemma 20, so in this proof we will show that both local operators result in a
valid algorithm. Let v be the node under consideration and for any node w denote by q′

s(w) and q′
r(w) its

selection probability and its removed fraction, respectively, after applying one of the local operators.
Consider the high-degree local operator and any monotone path P = (v, v1, v2, . . .). Note that every

monotone path contains exactly one child of v. Then∑
w∈P

q′
s(w) = q′

s(v) + q′
s(v1) +

∑
i≥2

q′
s(vi) = 0 + (qs(v1) + qs(v)) +

∑
i≥2

qs(vi) =
∑
w∈P

qs(w) .

So if the original algorithm was valid, so is the algorithm after applying this operator.
For the low-degree operator, note that we change qs(v) to qs(v)+ε = qs(v)+1−qs(v)−qr(v) = 1−qr(v).

Therefore, after applying the operator, we have qs(v) + qr(v) = 1. Since in general for any child w of v we
have qr(w) = qs(v)+qr(v), we see that qs(w) ≤ 1−qr(w) = 1−1 = 0, which is what we needed to prove.

With this lemma, the proof of the negative results of Theorem 2 is complete, except for the final assump-
tion we need to drop: The proof also holds for algorithms that are not size-oblivious.

9
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1.6 Generalization to non-size-oblivious algorithms
We now prove that if an algorithm is not size-oblivious, it cannot perform better asymptotically. To do so,
we first introduce a colored variant of the last zero problem. For a colored string s, its red norm ||s||r and
blue norm are the number of red 1s and blue 1s s contains, respectively.

Definition 19. The colored last zero problem is the following;

• Phase 1: An adversary picks two integers m and n, with m ≤ n.
• Phase 2: A string of bits of length n is generated, where in each position independently the bit equals

1 with probability p and 0 otherwise.
• Phase 3: We color the entries 1 to m with red, while the entries m + 1 to n are colored blue.
• Phase 4: The red norm, blue norm and length of the string are revealed to the player.
• Phase 5: The bits of the string are presented to the player one after the other. The player chooses at

each step to continue or to stop the game. If the player continues, the next bit is presented to her.

The player wins if she stops on the last red 0 of the string.

Note that now the player has three numbers to start with: the number of red samples r := ||s||r, the
number of blue samples b := ||s||b and the size |s| = n.

Proposition 4. The colored last zero problem is equivalent to a specific instance of AOSp with known size
n. Therefore, any negative result for the colored last zero problem also holds for AOSp.

Proof. An algorithm A again only succeeds if it stops at the element of the online set with the largest value,
only that now it knows in advance how many online elements it is going to observe. Imagine now that A
is facing an instance of the following form: The first m elements are assigned a series of positive strictly
increasing values, and the remaining n−m take arbitrary negative values. Thus, in this instance A is aiming
for the last non-sampled element among the first m. This is basically the same game as the colored last
zero problem, where the red values correspond to the positive values and the blue values correspond to the
negative ones. The formal proof is almost the same as the proof of Proposition 1.

With this analog of Proposition 1, we are going to prove the following theorem in the remainder of this
section.

Theorem 6. In the colored last zero problem, no algorithm can achieve performance kpk(1−p)+ε on every
size n ≥ N0 (for some N0 > 0) for any ε > 0.

Intuitively, the colored last zero problem is not much different from the case without colors: there is still
an unknown point in the string where the algorithm should stop, and there is still a string of bits before
this point (the red bits). The only difference is that the algorithm is not size-oblivious and is also given the
total number of 1s in the last n − m bits (the blue bits). At first sight these blue 1s seem useless, because
the algorithm wants to stop before reaching them. On the other hand, the fact that an algorithms knows
how many they are, gives an indication about the size of n − m and this could be already enough to improve
the performance. We show that this is not the case. To do so, we define a slightly different conflict graph,
and study its structure to show that up to negligible terms the dynamics are the same as for the standard
conflict graph.

Modified conflict graph.

For the colored last zero problem, m basically plays the role that n was playing before. Therefore, the
different layers of the conflict graph correspond to the various sizes of m in this case, and there is a separate
conflict graph for each value of n. Note that for a given size n its conflict graph has a finite number of layers
as m varies between 1 and n.

A node of the graph is a couple (s, b), where s is a string of bits of length m, that represents the string
of red bits, and b is an integer that represents the number of blue 1s. The exact positions of 0s and 1s in the
blue bits are irrelevant for our proof, only the total number of blue 1s matters.

10
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Finally, just as before, the nodes have different weights, with the difference here that the weights also
depend on b. In particular, the weight of a node (s, b) is

pr+b(1 − p)n−r−b

(
n − m

b

)
.

Indeed, the probability that r + b 1s occur in an instance of size n when sampling with probability p is
pr+b(1 − p)n−r−b, where r and b are the number of red 1s and blue 1s respectively. As in the conflict graph
all the instances with b blue 1s are grouped together, the weight of the combined node is multiplied by the
total number of such instances.

Conflict structure.

Now let us consider the conflicts. One can see that two nodes (s, b) and (s′, b′) are in conflict if and only if
b = b′, and s ≁ s′ (in the sense of the standard conflict graph). Note that for an instance and its descendants
the values b, r and n are the same. In other words, to move from size m to size m + 1 we can add a 0 in
the appropriate position, just as in Lemma 4, and monotone paths in the conflict graph determine conflicts
again.

We now study the relation between the weights of an instance and its children. Let I1 be a node with a
string s of size m and let I2 be one of its children (note that I2 has size m + 1 and is in conflict with I1).
Let p1 and p2 be the weights associated with these nodes. We derive from the formula above that:

p2

p1
=
(

n−m−1
b

)(
n−m

b

) = n − m − b

n − m
.

Having defined the modified conflict graph, we are now ready to show the main result of this section.

Proof of Theorem 6. Consider again the ratio p2/p1. The expected value of b is (n − m)p, but this will not
be the case for all instances that we consider. For large values of n − m though, we can apply standard
concentration arguments (see e.g. Lemma 27) and obtain that with high probability we have

(n − m) − (n − m)p − ε

n − m
≤ p2

p1
≤ (n − m) − (n − m)p + ε

n − m
,

which is true if and only if

1 − p − ε′ ≤ p2

p1
≤ 1 − p + ε′ ,

where ε′ = ε
n−m . From here it is easy to observe that when ε takes a value very close to 0, so does ε′.

Furthermore, as n−m grows, ε′ vanishes. Thus the modified conflict graph has the same weight distribution
as in Lemma 6 with high probability.

Therefore, with high probability, the modified conflict graph is (almost) the same as the weighted conflict
graph from Section 3.2.3. Thus, we can follow again the arguments for size-oblivious algorithms, since they all
hold in this case too. We end up with the same impossibility results, which hold here both for deterministic
and for randomized algorithms as well.

2 Omitted proofs from Section 4
Proof of Lemma 12. Fix a sequence t and a sampling probability p. We use a coupling argument between
realizations of the arrival times in instances with n and n+1 values. We start with an instance α1, . . . , αn+1,
and assume the values are indexed in decreasing order. Consider a realization of the arrival times τ1 =
τ ′

1, . . . , τn+1 = τ ′
n+1 and couple it with the corresponding realization τ1 = τ ′

1, . . . , τn = τ ′
n in the instance

α1, . . . , αn. Assume that in the instance with n values and for this particular realization of the arrival times,
ALGt fails. This means that V \{αn+1} is non-empty and either ALGt never stops or it accepts a value that
is not the maximum of V \ {αn+1}. Note that regardless of τ ′

n+1, the rankings of the values in V \ {αn+1}
are the same in both instances because αn+1 is smaller than all other values. Thus, if τ ′

n+1 < p, ALGt does

11
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not succeed either when applied in the instance of n + 1 values. On the other hand, if τ ′
n+1 > p, we have to

distinguish between two cases. If ALGt accepts αn+1, it fails, because V \ {αn+1} is non-empty and then
αn+1 cannot be the largest in V . If ALGt does not accept αn+1, then the behavior of ALGt in the rest of
the variables is the same as in the instance with n values and then it fails.

Since the distribution of τ1, . . . , τn is the same in both instances, we conclude with this argument that
the probability that ALGt fails in the instance with n + 1 values is at least as large as in the instance with
n values.

Proof of Lemma 13. We first calculate the success probability of ALGt for fixed p and n and then take the
limit when n tends to infinity.

We say a value αi is acceptable for ALGt (for a particular realization of the arrival times) if p < τi, for
some j ∈ N we have that tj ≤ τi < tj+1, and αi is larger than the j-th largest value in S. Now, note that if
max V is not acceptable for ALGt, then ALGt does not stop. This is because we restricted the sequence t
to be increasing, so values that arrive before max V are not acceptable, and values arriving after max V will
not be the best seen so far from V . We use this to decompose the success probability as follows.

P(ALGt succeeds) = P(max V is acceptable) − P(ALGt stops before seeing max V ) . (1)

In this definition, if V is empty we also say max V is acceptable. We first calculate the probability that
max V is acceptable. Assume that the values are indexed in decreasing order, i.e., that α1 > · · · > αn.

P(max V is acceptable) = P(V = ∅) +
n∑

i=1
P(max V = αi) · P(ti ≤ τi | max V = αi)

= pn +
n∑

i=1
pi−1(1 − p) · 1 − max{p, ti}

1 − p

= pn +
n∑

i=1
pi−1 (1 − max {p, ti}) . (2)

By the same argument, ALGt stops before seeing max V if and only if at least one value arrives after p
and before the arrival time of max V , and the maximum such value is acceptable.

P(ALGt stops before seeing max V )

=
n∑

j=1
P(max V = αj) · P(maximum before max V is acceptable | max V = αj)

=
n∑

j=1
P(max V = αi)

n−1∑
i=j

P
(

max. in [p, τj) has rank i among elements that arrive in [0, τj),

and arrives in [ti, τj)
∣∣∣ max V = αj

)
=

n∑
j=1

pj−1(1 − p)
n−1∑
i=j

1
1 − p

∫ 1

p

P
(

max. in [p, t) has rank i among elements that arrive in [0, t),

and arrives in [ti, t)
∣∣∣ max V = αj , τj = t

)
dt

=
n∑

j=1
pj−1(1 − p)

n−1∑
i=j

1
1 − p

∫ 1

max{p,ti}

(p

t

)i−j

· (t − max{p, ti})
t

· P(at least i values arrive before t | max V = αj , τj = t) dt

=
n∑

j=1
pj−1

n−1∑
i=j

∫ 1

max{p,ti}

(p

t

)i−j

· (t − max{p, ti})
t

(
1 − Bt,n−j(i − j + 1)

)
dt

12
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=
n−1∑
i=1

pi−1
∫ 1

max{p,ti}

i∑
j=1

t − max{p, ti}
tj

(
1 − Bt,n−j(i − j + 1)

)
dt , (3)

where Bp,n(x) =
∑x

i=0
(

n
i

)
pi(1 − p)n−i is the CDF of a Binomial distribution of parameters p and n. Note

that for any fixed integers i and j, and time t ∈ (0, 1), Bt,n−j(i − j + 1) converges to 0 when n tends to
infinty. Therefore, replacing Eq. (2) and Eq. (3) in Eq. (1), and taking the limit when n tends to infinity,
we conclude the proof of the lemma.

We note that as a by-product of the previous proof we can compute related statistics such as the proba-
bility that the algorithm stops. Indeed the event that the algorithm stops exactly coincides with the event
that the maximum element of V is acceptable. This holds because first, if the maximum is acceptable, then
clearly, the algorithm stops. And, second, if the algorithm stops, then there is an acceptable element in V
which is either the maximum or an element that arrives earlier. In the latter case, the maximum element in
V is also acceptable since its relative rank can only be better. We thus conclude that

P(ALGt stops) = pn +
n∑

i=1
pi−1 (1 − max {p, ti}) .

Proof of Lemma 14. First, we relax the monotonicity constraint on the sequence of ti’s. The resulting relaxed
optimization problem is separable, i.e., optimizing over the entire sequence is equivalent to optimizing over
each variable independently. For each ti we get the following equivalent problem.

max
ti∈[0,1]

pi−1

1 − max{p, ti} −
∫ 1

max{p,ti}

i∑
j=1

t − max{p, ti}
tj

dt

 .

Equivalently, we can remove the factor pi−1 and restrict ti to be in [p, 1], obtaining

max
ti∈[p,1]

1 − ti −
∫ 1

ti

i∑
j=1

t − ti

tj
dt .

Denoting by Gi(ti) this objective function, we get that

d

dti
Gi(ti) = −1 +

∫ 1

ti

i∑
j=1

1
tj

dt , and d2

dt2
i

Gi(ti) = −
i∑

j=1

1
tj
i

.

Therefore, Gi(ti) is a concave function and then the optimum is max{p, t∗
i }, where t∗

i is the solution of
d

dti
Gi(ti) = 0. In the original objective function ti appears always as max{p, ti} so there we can simply take

t∗
i as the solution. Now we prove that t∗

i is actually increasing in i, so it is also the optimal solution before
doing the relaxation. In fact, t∗

i satisfies ∫ 1

t∗
i

i∑
j=1

1
tj

dt = 1 .

Note that the left-hand side of this equation is decreasing in t∗
i , and is increasing in i. Thus, necesarily

t∗
i ≤ t∗

i+1, for all i ≥ 1. We conclude that t∗
i satisfies Eq. (2) by simply integrating on the left-hand side of

the last equation.

Proof of Lemma 15. We study the optimal ordinal policy obtained with backward induction, and prove that
it is in fact a sequential-ℓ-max algorithm for certain ℓ. Recall that we can assume the optimal policy is
ordinal, so this algorithm will be optimal not only among ordinal algorithms.

Denote by Xi = απ(i) the i-th value, in the order of increasing arrival times. Denote by R(X1, . . . , Xj)
the relative ranks of values X1, . . . , Xj . In what comes, we use the notation R(X1, . . . , Xj) = x to condition
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on a particular realization x of the relative ranks. Let x be a realization of the ranks such that Xj is the
maximum in V so far, i.e., Xj = max V ∩ {X1, · · · , Xj}, and has rank r among X1, · · · , Xj . Then,

P
(

Xj = max V
∣∣∣ R(X1, . . . , Xj) = x

)
= P

(
Xj+1, . . . , Xn have overall rank at most r + 1

∣∣∣ R(X1, . . . , Xj) = x
)

= P
(

Xj+1, . . . , Xn have overall rank at most r + 1
)

=
r−1∏
s=0

j − s

n − s
.

The optimal policy is to accept Xj if this probability is larger or equal than the probability of picking max V
after rejecting Xj if from j + 1 onwards we use the optimal policy, conditional on R(X1, . . . , Xj) = x.

Let now x′ be a realization of R(X1, . . . , Xj+1) such that the relative rank of the best of V up to step
j + 1 is r. Suppose that conditional on R(X1, . . . , Xj+1) = x′, the probability of winning if we use the
optimal strategy from j + 2 onwards depends solely of n, j + 1 and the relative rank r, for all possible ranks
r. Denote this conditional probability by W (n, j + 1, r). We want to inductively prove that this is in fact
true for all n, j and r. It is of course true in the last step, when j + 1 = n, so we do induction on j. Let x′′

be a realization of R(X1, . . . , Xj) such that the relative rank of the best of V up to step j is r. We have that

P
(

win after j
∣∣∣ R(X1, . . . , Xj) = x′′

)
= P

(
Xj+1 has relative rank ≥ r + 1

∣∣∣ R(X1, . . . , Xj) = x′′
)

· W (n, j + 1, r)

+
r∑

r′=1
P
(

Xj+1 has relative rank r′
∣∣∣ R(X1, . . . , Xj) = x′′

)

· max

W (n, j + 1, r′),
r′−1∏
s=0

j + 1 − s

n − s

 . (4)

But for all x,

P
(

Xj+1 has relative rank r′
∣∣∣ R(X1, . . . , Xj) = x

)
= 1

j + 1 .

This proves the inductive step. Therefore, W (n, j, r) is well defined for all n, j and r, and the optimal policy
accepts Xj that has relative rank r and is the maximum so far in V if and only if

r−1∏
s=0

j − s

n − s
≥ W (n, j, r) .

From Eq. (4) it is easy to check that W (n, j, r) is decreasing in j for fixed n, r and increasing in r for fixed
n, j.1 Therefore the optimal policy is the sequential-ℓ-max algorithm, for ℓ defined as

ℓ(j) = max
{

r :
r−1∏
s=0

j − s

n − s
≥ W (n, j, r)

}
.

This concludes the proof of the lemma.

1At an intuitive level it is also easy to be convinced of this: as time passes it is harder to win, and if only low values (with
large rank) have appeared, it is easier to win in the future.
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Proof of Lemma 16. We calculate first the probability of some events. For i ∈ {h + 1, . . . , n}, denote by Ai

the event that the i-th element is the largest of V and the algorithm never stops. Notice that Ai is equivalent
to the event that the overall largest ℓ̂(i) elements are in S, and the i-th element is the largest of V (for this
equivalence it is necessary that ℓ is non-decreasing). Therefore, we have that

P(Ai) = 1
n − h

ˆℓ(i)−1∏
j=0

h − j

n − j
.

Note that this is 0 if ℓ̂(i) = h + 1. Now, for h + 1 ≤ r ≤ i ≤ n, define Br,i the event that the r-th element is
the largest among positions {h + 1, . . . , i} and the algorithm does not stop before i + 1. This is equivalent
to the event that the r-th element is the largest among positions {h + 1, . . . , i} and the largest ℓ̂(r) elements
among positions {1, . . . , i} are in S. Thus,

P(Br,i) = 1
i − h

ℓ̂(r)−1∏
j=0

h − j

i − j
.

Now, note that Br,i \ Ar is the event that the r-th element is the largest among positions {h + 1, . . . , i}, but
not of V , and the algorithm does not stop before i + 1. Note also that Ar ⊆ Br,i. Therefore, the probability
that the algorithm does not stop before i + 1 and the maximum of V is among positions {i + 1, . . . , n} is

i∑
r=h+1

P(Br,i) − P(Ar) =
i∑

r=h+1

1
i − h

ℓ̂(r)−1∏
j=0

h − j

i − j
− 1

n − h

ℓ̂(r)−1∏
j=0

h − j

n − j
.

Conditional on this event, the probability that the number in the i + 1-th position is the largest of V is
1/(n − i), because the relative order within positions {i + 1, . . . , n} is independent of this event. Thus,
we obtained the probability that the i + 1-th element is the largest of V and the algorithm does not stop
before i + 1. To obtain the probability of winning in step i + 1, we have to subtract the probability that the
i + 1-th element is the largest of V , but the algorithm never stops, i.e., P(Ai+1). Therefore, the probability
of winning at step i + 1 is

1
n − i

i∑
r=h+1

 1
i − h

ℓ̂(r)−1∏
j=0

h − j

i − j
− 1

n − h

ℓ̂(r)−1∏
j=0

h − j

n − j

− 1
n − h

ℓ̂(i+1)−1∏
j=0

h − j

n − j
.

The probability of winning at step h + 1 is slightly different, because the algorithm never stops before it. In
that case the probability of winning is

1
n − h

1 −
ℓ̂(h+1)−1∏

j=0

h − j

n − j

 .

Adding these expressions concludes the proof of the lemma.

Proof of Lemma 17. First we show that the function ℓ that maximizes Eq. (3), in a certain sense converges
to a function ℓ̃ : (0, 1) → N. Then, we do a Riemann sum analysis to show that the success probability of
the sequential-ℓ-max algorithm converges to an expression in terms of ℓ̃, and then we show that this can be
equivalently expressed as Eq. (1) for some sequence t.

Except for terms that vanish when n tends to infinity, Eq. (3) can be rewritten as

n∑
r=h+1

 n∑
i=r

1
n − i

 1
i − h

ℓ̂(r)−1∏
j=0

h − j

i − j
− 1

n − h

ℓ̂(r)−1∏
j=0

h − j

n − j

− 1
n − h

ℓ̂(r)−1∏
j=0

h − j

n − j

 . (5)
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To find the optimal ℓ(r) we simply maximize the following term as a function of s.

Fn(r, s) =
n∑

i=r

1
n − i

 1
i − h

s−1∏
j=0

h − j

i − j
− 1

n − h

s−1∏
j=0

h − j

n − j

− 1
n − h

s−1∏
j=0

h − j

n − j
.

Between s and s + 1 the change is

Fn(r, s + 1) − Fn(r, s)

=
n∑

i=r

1
n − i

 h−s
i−s − 1
i − h

s−1∏
j=0

h − j

i − j
−

h−s
n−s − 1
n − h

s−1∏
j=0

h − j

n − j

−
h−s
n−s − 1
n − h

s−1∏
j=0

h − j

n − j

=
n∑

i=r

1
n − i

− 1
i − s

s−1∏
j=0

h − j

i − j
+ 1

n − s

s−1∏
j=0

h − j

n − j

+ 1
n − s

s−1∏
j=0

h − j

n − j

= β(n, s, h)

 n∑
i=r

1
n − i

1 − n − s

i − s

s−1∏
j=0

n − j

i − j

+ 1

 ,

where β(n, s, h) is a positive term, so the sign of this difference is not affected by it. The other term is
decreasing in s, so Fn(r, s) is maximized when this differences changes sign. In other words, it is maximized
in

ℓ∗
n(i) = min

s ∈ [n] :
n∑

i=r

1
n − i

1 −
s∏

j=0

n − j

i − j

+ 1 ≤ 0

 .

Now, doing a Riemann sum analysis, we have that ℓ̃(τ) = limn→∞ ℓ∗
n(⌊τn⌋) satisfies

ℓ̃(τ) = min
{

s ∈ N :
∫ 1

τ

(
1

1 − t

(
1 − 1

ts+1

)
+ 1
)

dt ≤ 0
}

. (6)

Thus, interpreting Eq. (5) as a Riemann sum, and noting that |S|/n converges to p almost surely, we have
that the success guarantee of the optimal policy converges to∫ 1

p

∫ 1

τ

1
1 − t

(
1

t − p

(p

t

)ℓ̃(τ)
− 1

1 − p
pℓ̃(τ)

)
dt − 1

1 − p
pℓ̃(τ) dτ .

From Eq. (6) it is clear that ℓ̃ is non-decreasing, so we can define the sequence ti = inf
{

τ ∈ [p, 1] : ℓ̃(τ) ≥ i
}

and rewrite the limiting success guarantee in terms of it. Thus, we obtain
∞∑

i=0

(∫ ti+1

ti

∫ 1

τ

1
1 − t

(
1

t − p

(p

t

)i

− 1
1 − p

pi

)
dt dτ −

ti
i+1 − ti

i

1 − p

)
.

If we rearrange the terms, turning the integral from ti to ti+1 into the difference between the integral from
ti to 1 and the integral from ti+1 to 1, we obtain∫ 1

p

∫ 1

τ

1
(t − p)(1 − p) dt dτ − p

1 − p

+
∞∑

i=1

(∫ 1

ti

∫ 1

τ

1
1 − t

((
p
t

)i −
(

p
t

)i−1

t − p
− pi − pi−1

1 − p

)
dt dτ +

ti

(
pi − pi−1)
1 − p

)

= 1
1 − p

−
∞∑

i=1
pi−1

(∫ 1

ti

∫ 1

τ

1
1 − t

(
t − p

ti(t − p) − 1 − p

1 − p

)
dt dτ + ti

1 − p

1 − p

)
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= 1
1 − p

−
∞∑

i=1
pi−1

(∫ 1

ti

∫ 1

τ

1
ti(1 − t)

(
1 − ti

)
dt dτ + ti

)

= 1
1 − p

−
∞∑

i=1
pi−1

∫ 1

ti

∫ 1

τ

i−1∑
j=0

tj

ti
dt dτ + ti


=

∞∑
i=1

pi−1

1 − ti −
∫ 1

ti

∫ 1

τ

i∑
j=1

1
tj

dt dτ


=

∞∑
i=1

pi−1

1 − ti −
∫ 1

ti

i∑
j=1

t − ti

tj
dt

 .

This concludes the proof, since we defined the ti’s in a way that they satisfy ti = max {p, ti}.

Proof of Lemma 18. We analyze separately the sum when p = max{p, t′
i} and when t′

i = {p, t′
i}. We call the

first part V1, which includes the terms up to i = ⌊ c
1−p ⌋, and V2 the rest.

V1 = lim
p→1

⌊ c
1−p ⌋∑
i=1

pi−1

1 − p −
∫ 1

p

i∑
j=1

t − p

tj
dt


= lim

p→1

⌊ c
1−p ⌋∑
i=1

pi−1

1 − p −
∫ 1

p

dt +
∫ 1

p

dt

ti
−
∫ 1

p

i∑
j=1

1 − p

tj
dt


= lim

p→1

⌊ c
1−p ⌋∑
i=1

pi−1

p−(i−1) − 1
i − 1 − (1 − p) ln(1/p) − (1 − p)

i∑
j=2

p−(j−1) − 1
j − 1


= lim

p→1

⌊ c
1−p ⌋∑
i=1

1 − pi−1

i − 1 − lim
p→1

⌊ c
1−p ⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e−(j−1) ln p − 1
j − 1

= lim
p→1

⌊ c
1−p ⌋∑
i=1

1 − (p
1

1−p )(i−1)(1−p)

(i − 1)(1 − p) (1 − p) − lim
p→1

⌊ c
1−p ⌋∑
i=1

(pi−1 − pi)
i∑

j=2

e− (j−1)
i i ln p − 1

(j − 1)/i
· 1

i

Interpreting these two sums as Riemann sums, we obtain

V1 =
∫ c

0

1 − e−x

x
dx −

∫ 1

e−c

∫ 1

0

e−x ln y − 1
x

dx dy

=
∫ c

0

1 − e−x

x
dx −

∫ 1

e−c

∫ 1

0

e−x ln y − 1
−x ln y

(− ln y) dx dy

=
∫ c

0

1 − e−x

x
dx −

∫ 1

e−c

∫ − ln y

0

ex − 1
x

dx dy

=
∫ c

0

1 − e−x

x
dx −

∫ c

0

∫ e−x

e−c

ex − 1
x

dy dx

=
∫ c

0

1 − e−x − (e−x − e−c)(ex − 1)
x

dx

= e−c

∫ c

0

ex − 1
x

dx

17
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= e−c

∫ 1

0

ecx − 1
x

dx

= e−c ,

where the last step comes from the definition of c. On the other hand, we have that

V2 = lim
p→1

∞∑
i=⌊ c

1−p ⌋+1

pi−1

c

i
−
∫ 1

1− c
i

i∑
j=1

t − 1 + c/i

tj
dt


= lim

p→1

∞∑
i=⌊ c

1−p ⌋+1

pi−1

c

i
−
∫ 1

1−c/i

dt +
∫ 1

1−c/i

1
ti

dt −
∫ 1

1−c/i

i∑
j=1

c/i

tj
dt


= lim

p→1

∞∑
i=⌊ c

1−p ⌋+1

pi−1

 (1 − c/i)−(i−1) − 1
i − 1 + c

i
ln(1 − c/i) −

i∑
j=2

c
(1 − c/i)−(j−1) − 1

i(j − 1)


= lim

p→1

∞∑
i=⌊ c

1−p ⌋+1

(pi−1 − pi) (1 − c/i)−(i−1) − 1
1−p

− ln p (i − 1)(− ln p)

− lim
p→1

∞∑
i=⌊ c

1−p ⌋+1

pi−1 − pi

1−p
− ln p i(− ln p)

i∑
j=2

c
(

(1 − c/i)−i j−1
i − 1

)
j/i

· 1
i

,

where in the last equality we omitted a term that vanishes when p tends to 1. We again interpret the sums
as Riemann sums.

V2 =
∫ e−c

0

ec − 1
ln(1/x) dx − c

∫ e−c

0

1
ln(1/x)

∫ 1

0

ecy − 1
y

dy dx

= (ec − 1 − c)
∫ e−c

0

1
ln(1/x) dx

= (e−c − 1 − c)
∫ ∞

1
x−1e−cx dx .

In the second equality we used the definition of c and in the third one we performed a change of variables.
Summing V1 and V2 we get Eq. (4).

Proof of Lemma 19. We compute thresholds t̃ as follows. For the first O
(

1
ε·(1−p)

)
thresholds, we find ap-

proximate solutions to Eq. (2) using binary search in the interval [1/e, 1]. The left-hand side is monotone
and continuous, and is at least 1 at 1/e, and 0 at 1. With O

(
log
(

1
ε(1−p)

))
iterations per threshold, we can

get solutions within an error of O(ε2(1 − p)2) of the optimal thresholds. By taking the right-hand endpoint
of the last interval in the binary search, we additionally ensure that t∗

i ≤ t̃i for each threshold we compute.
We set all the other thresholds to be equal to 1. Evaluating Eq. (2) for a given i ∈ N takes time O(i), so the
previous computation takes in total O

(
1

ε2·(1−p)2 log
(

1
ε·(1−p)

))
steps.

We show now that by using t̃ we get a success guarantee of γ(p) − O(ε). Notice first that since t∗
i ≤ t̃i

for all i ∈ N, ALGt̃ never stops eariler than ALGt∗ . Now, consider a realization in which ALGt∗ succeeds
in selecting the best element in [p, 1]. In the same realization, if ALGt̃ does not succeed, then it must be
the case that for some i ∈ N, the best element in [p, 1] arrived in [t∗

i , t̃i), so it was acceptable for ALGt∗ ,
but not for ALGt̃. Since the arrival of the best element is uniform in [p, 1], we can bound the probability
that ALGt∗ succeeds and ALGt̃ does not by the measure of ∪i∈N[t∗

i , t̃i), relative to [p, 1]. We know that
t∗
i = 1 − O(1/i), so the contribution of the thresholds we approximate with 1 is only O(ε(1 − p)). For the
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thresholds for which we solve the equation, the total error is also O(ε(1 − p)). Therefore, relative to [p, 1],
the measure of the set is only O(ε).

3 Omitted proofs from Section 5
Proof of Theorem 4. Consider an instance of AOSp for a fixed unknown value of p where the player is faced
with h samples. The proof follows from the next expression for the success probability and concentration
bound. Note that for p̂ = h/n, we can write k =

⌊
1

1−p̂

⌋
=
⌊

n
n−h

⌋
.

Lemma 26. For a given sample set S with h values and an online set V with n − h values, the k-max
algorithm with k =

⌊
n

n−h

⌋
chooses the maximum value of the online set with probability

P[Success] =
n∑

h=0

⌊
n

n − h

⌋(
h

n

)⌊ n
n−h ⌋ n − h

n

(
n

h

)
ph(1 − p)n−h ,

where p is the probability of independently sampling a value from the initial set.

Proof. Assume that the values of the adversarial input A are sorted in decreasing order α1 > α2 > . . . > αn.
Let us call ph the probability that the k-max algorithm succeeds in a particular instance with h samples and
Sh the event where |S| = h. Then the total probability that the k-max algorithm succeeds equals

P[Success] =
n∑

h=0
P[k-max algorithm wins | Sh] · P[Sh]

=
n∑

h=0
ph

(
n

h

)
ph(1 − p)n−h ,

since each value of the initial set is sampled independently with probability p. It remains to determine ph.
Conditioned on the fact that we end up with h samples, all the different labelings (as a sample or online
value) of the initial n values are equally likely to happen. There are

(
n
h

)
different labelings, and each αi is

labeled as a sample in an h/n-fraction of the possible labelings and as an online value in the rest.
Observe, as in the proof of Lemma 1, that the algorithm succeeds only if exactly one of the ⌊n/(n − h)⌋

largest values of the adversarial input ends up in the online set and the (⌊n/(n − h)⌋ + 1)-th largest
ends up in the sample set. To compute the number of such labelings, first consider those such that
α1, α2, . . . , α⌊n/(n−h)⌋+1 are all labeled as samples except for exactly one. From those, we can exclude
the labelings that mark α⌊n/(n−h)⌋+1 as an online value, since in this case the ⌊n/(n − h)⌋-th largest sample
is larger than all the online values. Therefore, we obtain

ph =
(⌊

n

n − h

⌋
+ 1
)(

h

n

)⌊ n
n−h ⌋(n − h

n

)
−
(

h

n

)⌊ n
n−h ⌋(n − h

n

)
=
⌊

n

n − h

⌋(
h

n

)⌊ n
n−h ⌋(n − h

n

)
,

and the lemma follows.

Lemma 27 (Hoeffding (1963)). Let X1, X2, . . . , Xn be i.i.d. Bernoulli random variables with parameter p
and let X̄ = (

∑n
i=1 Xi) /n. Then for any ε > 0,

P
[∣∣X̄ − pn

∣∣ ≥ ε
]

≤ 2e−2nε2
.

Alternatively, by setting δ = 2e−2nε2 we get that

∣∣X̄ − pn
∣∣ ≤

√
1

2n
ln 2

δ
with probability at least 1 − δ .
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To finish the proof of Theorem 4, let ε1 and ε2 be such that

ε1 ≤ 1 −
(

h
n

) n
n−h

p
1

1−p

and ε2 ≤ 2e−2n .

Note that the first value is chosen such that⌊
n

n − h

⌋(
h

n

)⌊ n
n−h ⌋ n − h

n
≥
(⌊

1
1 − p

⌋)
p⌊ 1

1−p ⌋(1 − p) · (1 − ε1) ,

while the second is chosen such that Lemma 27 yields P
[∣∣X̄ − pn

∣∣ < 1
]

≥ 1 − 2e−2n ≥ 1 − ε2. Therefore,
with probability at least 1 − ε2, we have

pn+ε∑
h=pn−ε

(
n

h

)
ph(1 − p)n−h =

(
n

h

)
ph(1 − p)n−h

∣∣∣∣
h=pn

≥ 1 − ε2 .

Therefore, we can bound the success guarantee given by Lemma 26 as follows.

P[Success] =
n∑

h=0

⌊
n

n − h

⌋(
h

n

)⌊ n
n−h ⌋ n − h

n

(
n

h

)
ph(1 − p)n−h

≥
⌊

1
1 − p

⌋
p⌊ 1

1−p ⌋(1 − p) · (1 − ε1) ·
pn+ε∑

h=pn−ε

(
n

h

)
ph(1 − p)n−h

≥
⌊

1
1 − p

⌋
p⌊ 1

1−p ⌋(1 − p) · (1 − ε1) · (1 − ε2) .

For any given ε > 0, one can take ε1 and ε2 that adhere to the bounds above and such that (1−ε1)(1−ε2) ≤
(1 − ε). This yields a success guarantee that is at least 1 − ε times the success guarantee of the k-max
algorithm for known p.

Proof of Theorem 5. We prove that for any ε > 0, it is not possible to achieve a success guarantee of ε.
Consider the following new game for any δ > 0. The adversary selects a size n and generates an instance

of this size with increasing values. Then, the adversary again selects p appropriately, so that the probability
that there is at least one sample is at most δ and the probability that there are no samples is at least 1 − δ.
Then the sampling process happens and the player faces the sequence. If at least one value is sampled, the
player automatically wins, otherwise, she wins if and only if she selects the last non-sampled value.

Consider the case where there are no sampled values. Since the player does not learn anything along the
game, any deterministic algorithm waits t−1 values before it selects the t-th value. A randomized algorithm
can be thought of as a distribution over the stopping times t. Since the domain of t are all positive integers,
it is not possible that this distribution has weight at least λ for every size, for any constant λ > 0. Therefore,
on instances with stopping probability less than λ, the player only wins with probability at most λ. Such an
instance occurs trivially with probability at most 1.

Overall, in this new game, the player wins in at most δ + λ values. Taking e.g. δ and λ slightly smaller
than ε/2, the success guarantee of this game is less than ε.

The proof for AOSp with unknown p and n follows easily now. The adversary chooses values of n and
p as above. In case there are no sampled values, both games are the same, since in both cases the player
has the same information and the same available strategies. In case there is at least one sampled value, the
player wins in the new game with probability 1 and in AOSp with probability strictly less than 1. Therefore,
the success guarantee of AOSp is at most the success guarantee of the new game, which is less than ε.
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