Prophet Secretary Against the Online Optimal

Paul Dütting¹, Evangelia Gergatsouli², Rojin Rezvan³, Yifeng Teng¹, <u>Alexandros Tsigonias-Dimitriadis</u>⁴

¹Google Research, ²UW-Madison, ³UT Austin, ⁴Universidad de Chile

Background

 \rightarrow The secretary problem and the prophet inequality are two of the most important optimal stopping problems with many applications.

→ We have to decide immediately and irrevocably whether to choose the current item. Secretary problem: random arrival order, adversarial values for the items. Prophet inequality: adversarial order, values drawn from known distributions.

 \rightarrow We study the prophet secretary problem [1], a well-studied variant that arises as a natural combination of the two. Typically, we compare our algorithm to the **prophet**, who knows the values and always picks the best.

Closing the gap is still open! Current best strategy guarantees 0.669 [2] and UB is 0.7254 [3].

 \rightarrow We turn to a natural, but much less-studied benchmark: the **online optimal algorithm** [4]. This benchmark has the same info as we do at every step, but infinite computational power.

 \rightarrow This way, we measure the potential loss that arises due to computational limitations, rather than due to the fact that we have to make decisions online.

A new benchmark: The online optimal

Optimal strategy can be found via dynamic programming/backward induction \rightarrow it is in fact a series of **decreasing thresholds**. But DP size is exponential...

Idea: Group variables together into g types without hopefully losing much in the DP value.

$$OPT(X, k_1, ..., k_g) = \mathbb{E} \left[\max \left(X, \sum_{i \in [g]} \frac{k_i}{k_1 + \dots + k_g} OPT(X_i, k_1, \dots, k_{i-1}, k_i - 1, k_{i+1} \dots, k_g) \right) \right]$$

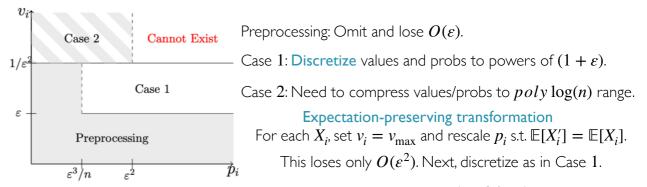
Running time is $O(n^g) \rightarrow O(1)$ types needed for PTAS.

Obsv 1: If we can calculate thresholds that are always within $(1 - \varepsilon)$ of the DP ones, then the strategy that uses these thresholds is a $(1 - \varepsilon)$ -approximation to the online optimal.

Obsv 2: Perturbing the support values and the probs of each X_i by a bit does not change the DP solution by much.

Warmup: QPTAS

→ To simplify, think of 2-point distr. with one mass at 0. WLOG, normalize OPT \in [0.5,1].



Counting the types: O(1) values, $O(poly \log(n))$ probs $\rightarrow O(n^{poly \log n})$ running time.

→ For general distr. we need more because each X_i can have multiple big support values. Fact: OPT (the optimal DP) will not set a threshold of more than OPT at any step.

Bundling:
$$X'_i = \begin{cases} x & \text{when } x \leq 1, \text{ w.p. } \Pr\left[X_i = x \right] \\ \mathbb{E}\left[X_i \mid X_i > 1\right] & \text{w.p. } \Pr\left[X_i > 1\right]. \end{cases}$$

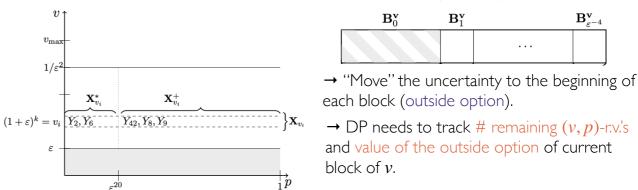
The bundling does not change the value of the optimal DP solution!

Main result: PTAS

 \rightarrow Problem: Each support value can still have $\Omega(\log n)$ different realization probabilities.

 \rightarrow Frontloading: For a sequence of r.v.'s, if their total realization prob. is "small", we can make a decision for the sequence as a whole: even if we have seen the realization of all such r.v.'s, we do not gain much compared to making a decision upon arrival of each!

Start from where we left off with the QPTAS and think again of 2-point distr.



^[1] Esfandiari H., HajiAghayi M., Liaghat V., Monemizadeh M. Prophet Secretary, ESA 2015

^[2] Correa J.R., Saona R., Ziliotto B. Prophet Secretary Through Blind Strategies, SODA 2019, Math. Program. 2022.

^[3] Bubna A., Chiplunkar A. Prophet Inequality: Order selection beats random order, EC 2023.

^[4] Papadimitriou C., Pollner T., Saberi A., Wajc D. Online Stochastic Max-Weight Bipartite Matching: Beyond Prophet Inequalities, EC 2021.