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Background

 → We turn to a natural, but much less-studied benchmark: the online optimal algorithm [4].           
This benchmark has the same info as we do at every step, but infinite computational power.

→ The secretary problem and the prophet inequality are two of the most important 
optimal stopping problems with many applications.
→ We have to decide immediately and irrevocably whether to choose the current item.
Secretary problem: random arrival order, adversarial values for the items.
Prophet inequality: adversarial order, values drawn from known distributions.
→ We study the prophet secretary problem [1], a well-studied variant that arises as a natural 
combination of the two.  Typically, we compare our algorithm to the prophet, who knows the 
values and always picks the best.  
Closing the gap is still open! Current best strategy guarantees 0.669 [2] and UB is 0.7254 [3]. 

A new benchmark: The online optimal
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Warmup: QPTAS

Main result: PTAS

→ Problem: Each support value can still have  different realization probabilities.Ω(log n)
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 → This way, we measure the potential loss that arises due to computational limitations, 
rather than due to the fact that we have to make decisions online.
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Optimal strategy can be found via dynamic programming/backward induction  it is in fact a 
series of decreasing thresholds. But DP size is exponential…

→

Idea: Group variables together into  types without hopefully losing much in the DP value.g

OPT(X , k1, …, kg) = 𝔼 max X , ∑
i∈[g]

ki

k1 + ⋯ + kg
OPT(Xi, k1, …, ki−1, ki-1,ki+1…, kg)

Running time is  types needed for PTAS. O(ng) → O(1)
Obsv : If we can calculate thresholds that are always within  of the DP ones, then 
the strategy that uses these thresholds is a -approximation to the online optimal.
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Obsv : Perturbing the support values and the probs of each  by a bit does not change the 
DP solution by much.
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→ To simplify, think of 2-point distr. with one mass at . WLOG, normalize .0 OPT ∈ [0.5,1]

Case : Discretize values and probs to powers of . 1 (1 + ε)

Preprocessing: Omit and lose .O(ε)

Case : Need to compress values/probs to  range.2 poly log(n)
Expectation-preserving transformation

For each , set  and rescale  s.t. .Xi vi = vmax pi 𝔼[X′￼i] = 𝔼[Xi]
This loses only . Next, discretize as in Case .O(ε2) 1

   Counting the types:  values,  probs   running time.O(1) O(poly log(n)) → O (npoly log n)
→ For general distr. we need more because each  can have multiple big support values.Xi

Fact: OPT (the optimal DP) will not set a threshold of more than OPT at any step.

Bundling: X′￼i = {
x when x ≤ 1, w.p. Pr [Xi = x]
𝔼 [Xi |Xi > 1] w.p. Pr [Xi > 1] .

The bundling does not change the value of the optimal DP solution!

→ Frontloading: For a sequence of r.v.’s, if their total realization prob. is “small”, we can make 
a decision for the sequence as a whole: even if we have seen the realization of all such r.v.’s, 
we do not gain much compared to making a decision upon arrival of each!

Start from where we left off with the QPTAS and think again of 2-point distr.

→ “Move” the uncertainty to the beginning of 
each block (outside option).
→ DP needs to track # remaining -r.v.’s 
and value of the outside option of current 
block of .
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