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Motivation of our work

Exact knowledge of the distributions is rare in practice.

Need for detail-free mechanisms (Wilson’s doctrine): Relax strong assumptions.

Settings with no access to the underlying distribution (e.g. data privacy), but statistics available.

Sample access vs. knowledge of moments.
[Cole and Roughgarden STOC 14, Gonczarowski and Weinberg FOCS 18, Huang et al. SICOMP 18§, ...}
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Setting: Single additive buyer, m items.

Assumptions: Seller knows only u;, o; of each

item’s j marginal distribution.

Seller announces “Nature” picks Expected outcome
mechanism distributions is realized

e

Question: Can we design mechanisms that provide good approximation guarantees?
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w.p. 1 % - w.p. 1/2 w.p.1/2
Dist. 1 Dist. 2
Best deterministic pricing ? Price at 1 . The adversary will play Dist. 2

E[Rev]=1-1/2=1/2

1, wp.2/3
Simple randomized pricing ? Price =

2, w.p.1/3

Adversary plays Dist.1 » E[Rev]=1-2/3=2/3

Adversary plays Dist.2 > E[Rev]=1-2/31/2+2-1/31/2=12/3
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Previous results

|Azar and Micali "12 & ITCS "13]: Deterministic, single-item, single-bidder.

Exact solution to the maximin expected revenue.
(Non-tight) upper & lower bounds for the ratio that grow quadratically in r = o/u.

| Azar, Daskalakis, Micali, Weinberg SODA "13]: Generalizes some results to n bidders.

Seller knows some parameters of the distributions (ex. medians).
Revenue & social welfare approximation under regularity or MHR assumptions.

|Carrasco et al. JET "18]: Maximin opt for single-item, single-bidder and randomized mechanisms.
[Che "19]: Generalization to n bidders.

[Suzdaltsev '20]: Maximin opt. revenue, n bidders & single item, seller knows means & UB on support.

None of the above tailored to the ratio benchmark! (+multi-item)
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Our quantity of interest is the robust approximation ratio:

o . APX(T7. ) = inf OPT(F)
— — is the CV. ,0)= 1nf su
' U e g mechs b REV(A, F )
Thm1: The deterministic APX(u, o) of selling a single (i, o)-distributed item is p(r) & 1 + 4 - .
This is achieved by offering a take-it-or-leave-it price of p = pr?:)r)_ /e

Thm2: The randomized APX(u, o) for single items is p(r) & 1 + In(1 + r?). Tt is asymptotically tight
and is achieved by randomization over posted prices.

Thm3: When selling m (possibly correlated) (1, ¢ )-distributed items then APX(u, ¢) is

O(logr,,..)- Mechanism: Sell each item separately with the lottery of Thm?2.

rmax
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The bounds for small values of r

Deterministic Randomized
O(r?) O(log r)
20 ‘ ‘ 6 | ‘
—— pp(T) = )
— Lower Bound
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CV is small for known classes of distributions (e.g. MHR).
If bounded by universal constant, then APX(, ¢ ) constant!
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Lower bound for randomized algorithms

Proof via generalized Yao's principle

] OPT(F) . | EcplOPT(F,)]
inf sup > sup 1nf;
A€A, FeF,, REV(A; F) (B,F)eAMpZO —glREV(p; F,)]

HF_J

“Distributions over Distributions”

Posterior distribution E,_z[F,](z) = JF (z; €)dB(€)
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B(e) Fe(2)
1 1 ................................. o
1—e¢ 0
c
0 o 1 < 0 M ple  z

G(z) =

Y B[Fg] (2)
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Lower bound - Construction of the mixture

G(z) = E,.. plF @)

Truncated equal revenue
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Open questions

e Multiple bidders - multiple items (generalize ours & [Azar et al. SODA "13])
e Intervals of confidence
e Broader classes of valuations

e Higher-order moments - the “moment complexity”
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