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ROBUST REVENUE MAXIMIZATION UNDER 
MINIMAL STATISTICAL INFORMATION
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Q:  What is the revenue-maximizing auction?

A: Second-price auction with a reserve price!

Full knowledge of distribution!

v1 ∼ F

v2 ∼ F

vn
∼ F
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Exact knowledge of the distributions is rare in practice.

Need for detail-free mechanisms (Wilson’s doctrine): Relax strong assumptions.

Settings with no access to the underlying distribution (e.g. data privacy), but statistics available.

Sample access vs. knowledge of moments. 
[Cole and Roughgarden STOC ’14, Gonczarowski and Weinberg FOCS ’18, Huang et al. SICOMP ’18, …]
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4

Setting: Single additive buyer,  items.


Assumptions: Seller knows only  of each 

item’s    marginal distribution.


m

μj, σj
j

Seller announces 

mechanism

“Nature” picks

distributions

Expected outcome

is realized

Question: Can we design mechanisms that provide good approximation guarantees?

⃗v ∼ F
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[Azar and Micali  ’12 & ITCS ’13]: Deterministic, single-item, single-bidder.   

Exact solution to the maximin expected revenue.                                                             
(Non-tight) upper & lower bounds for the ratio that grow quadratically in .r = σ/μ

[Azar, Daskalakis, Micali, Weinberg  SODA ’13]: Generalizes some results to  bidders.                                                n

Seller knows some parameters of the distributions (ex. medians).
Revenue & social welfare approximation under regularity or MHR assumptions.

[Carrasco et al.  JET ’18]: Maximin opt for single-item, single-bidder and randomized mechanisms.
[Che ’19]: Generalization to  bidders.n

[Suzdaltsev ’20]: Maximin opt. revenue,  bidders & single item, seller knows means & UB on support. n

None of the above tailored to the ratio benchmark! (+multi-item)
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Thm1:  The deterministic  of selling a single -distributed item is                                                                                               
This is achieved by offering a take-it-or-leave-it price of   .

APX(μ, σ) (μ, σ) ρD(r) ≈ 1 + 4 ⋅ r2 .
p = ρD(r)

2ρD(r) − 1 ⋅ μ

Thm2:  The randomized  for single items is . It is asymptotically tight 
and is achieved by randomization over posted prices.

APX(μ, σ) ρ(r) ≈ 1 + ln(1 + r2)

 is the CV.r =
σ
μ

Thm3: When selling  (possibly correlated) -distributed items then   is
. Mechanism: Sell each item separately with the lottery of  Thm2.

m ( ⃗μ , ⃗σ ) APX( ⃗μ , ⃗σ )
𝒪(log rmax)

Our quantity of interest is  the robust approximation ratio:


APX( ⃗μ , ⃗σ ) = inf
mechs

sup
distribs
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REV(A; F)
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CV is small for  known classes of distributions (e.g. MHR). 

If bounded by universal constant, then   constant!APX( ⃗μ , ⃗σ )

Deterministic

𝒪(r2)

Randomized

𝒪(log r)
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Proof via generalized Yao’s principle

“Distributions over Distributions”

inf
A∈𝔸1

sup
F∈𝔽μ,σ

OPT(F)
REV(A; F)

≥ sup
(B,F)∈Δμ,σ

inf
p≥0

𝔼ε∼B[OPT(Fε)]
𝔼ε∼B[REV(p; Fε)]{

Posterior distribution   𝔼ε∼B[Fε](z) = ∫ F(z; ε)dB(ε)
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Lower bound - Construction of the mixture

10

*
 =

G(z) = 𝔼ε∼ B[Fϵ](z)

Truncated equal revenue
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Open questions
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Multiple bidders - multiple items (generalize ours & [Azar et al. SODA ’13])

Intervals of confidence

Broader classes of valuations

Higher-order moments - the “moment complexity”


