ROBUST REVENUE MAXIMIZATION UNDER MINIMAL STATISTICAL INFORMATION

- Alexandros Tsigonias-Dimitriadis
- Operations Research Group & RTG AdONE **TU Munich**
- (Joint work with Yiannis Giannakopoulos and Diogo Poças)
 - WINE 2020 Virtual Talk

Q: What is the revenue-maximizing auction?

Q: What is the revenue-maximizing auction?

A: Second-price auction with a reserve price!

Q: What is the revenue-maximizing auction?

A: Second-price auction with a reserve price!

Exact knowledge of the distributions is rare in practice.

Exact knowledge of the distributions is rare in practice.

Need for detail-free mechanisms (Wilson's doctrine): Relax strong assumptions.

Exact knowledge of the distributions is rare in practice.

Need for detail-free mechanisms (Wilson's doctrine): Relax strong assumptions.

Settings with no access to the underlying distribution (e.g. data privacy), but statistics available.

Exact knowledge of the distributions is rare in practice.

Need for detail-free mechanisms (Wilson's doctrine): Relax strong assumptions.

Settings with no access to the underlying distribution (e.g. data privacy), but statistics available.

Sample access vs. knowledge of moments. [Cole and Roughgarden STOC '14, Gonczarowski and Weinberg FOCS '18, Huang et al. SICOMP '18, ...]

<u>Setting</u>: Single additive buyer, *m* items. <u>Assumptions</u>: Seller knows only μ_j , σ_j of each item's *j* marginal distribution.

<u>Setting</u>: Single additive buyer, *m* items. <u>Assumptions</u>: Seller knows only μ_j , σ_j of each item's *j* marginal distribution.

Setting: Single additive buyer, *m* items. <u>Assumptions</u>: Seller knows only μ_i , σ_i of each item's *j* marginal distribution.

Seller announces mechanism

<u>Setting</u>: Single additive buyer, *m* items. <u>Assumptions</u>: Seller knows only μ_j , σ_j of each item's *j* marginal distribution.

<u>Question</u>: Can we design mechanisms that provide good approximation guarantees?

Best deterministic pricing ?

Best deterministic pricing ?

Best deterministic pricing ?

Simple randomized pricing?

Simple randomized pricing?

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar, Daskalakis, Micali, Weinberg SODA '13]: Generalizes some results to *n* bidders.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar, Daskalakis, Micali, Weinberg SODA '13]: Generalizes some results to *n* bidders.

Seller knows some parameters of the distributions (ex. medians). Revenue & social welfare approximation under regularity or MHR assumptions.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar, Daskalakis, Micali, Weinberg SODA '13]: Generalizes some results to *n* bidders.

Seller knows some parameters of the distributions (ex. medians). Revenue & social welfare approximation under regularity or MHR assumptions.

[Carrasco et al. JET '18]: Maximin opt for single-item, single-bidder and *randomized* mechanisms. [Che '19]: Generalization to *n* bidders.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar, Daskalakis, Micali, Weinberg SODA '13]: Generalizes some results to *n* bidders.

Seller knows some parameters of the distributions (ex. medians). Revenue & social welfare approximation under regularity or MHR assumptions.

[Carrasco et al. JET '18]: Maximin opt for single-item, single-bidder and randomized mechanisms. [Che '19]: Generalization to *n* bidders.

[Suzdaltsev '20]: Maximin opt. revenue, *n* bidders & single item, seller knows means & UB on support.

[Azar and Micali '12 & ITCS '13]: Deterministic, single-item, single-bidder.

Exact solution to the *maximin expected revenue*. (Non-tight) upper & lower bounds for the *ratio* that grow **quadratically** in $r = \sigma/\mu$.

[Azar, Daskalakis, Micali, Weinberg SODA '13]: Generalizes some results to *n* bidders.

Seller knows some parameters of the distributions (ex. medians). Revenue & social welfare approximation under regularity or MHR assumptions.

[Carrasco et al. JET '18]: Maximin opt for single-item, single-bidder and randomized mechanisms. [Che '19]: Generalization to *n* bidders.

[Suzdaltsev '20]: Maximin opt. revenue, *n* bidders & single item, seller knows means & UB on support.

None of the above tailored to the ratio benchmark! (+multi-item)

Our quantity of interest is the robust approximation ratio: $r = \frac{\sigma}{\mu}$ is the CV. $APX(\overrightarrow{\mu}, \overrightarrow{\sigma}) = \inf_{\substack{mechs \ distribs}} \sup_{\substack{distribs}} \frac{OPT(F)}{REV(A;F)}$

Our quantity of interest is the robust approximation ratio:

 $r = \frac{\sigma}{\mu} \text{ is the CV.} \qquad \text{APX}(\overrightarrow{\mu}, \overrightarrow{\sigma}) = \inf_{\substack{\text{mechs} \\ \text{distribs}}} \sup_{\substack{\text{OPT}(F) \\ \text{REV}(A; F)}}$

This is achieved by offering a take-it-or-leave-it price of $p = \frac{\rho_D(r)}{2\rho_D(r) - 1} \cdot \mu$.

Thm1: The deterministic APX(μ , σ) of selling a single (μ , σ)-distributed item is $\rho_D(r) \approx 1 + 4 \cdot r^2$.

Our quantity of interest is the robust approximation ratio:

 $r = \frac{\sigma}{\mu} \text{ is the CV.} \qquad \text{APX}(\overrightarrow{\mu}, \overrightarrow{\sigma}) = \inf_{\substack{\text{mechs} \\ \text{distribs}}} \sup_{\substack{\text{OPT}(F) \\ \text{REV}(A; F)}}$

This is achieved by offering a take-it-or-leave-it price of $p = \frac{\rho_D(r)}{2\rho_D(r) - 1} \cdot \mu$.

and is achieved by randomization over posted prices.

Thm1: The deterministic APX(μ , σ) of selling a single (μ , σ)-distributed item is $\rho_D(r) \approx 1 + 4 \cdot r^2$.

Thm2: The randomized APX(μ, σ) for single items is $\rho(r) \approx 1 + \ln(1 + r^2)$. It is asymptotically tight

Our quantity of interest is the robust approximation ratio:

 $r = \frac{\sigma}{\mu} \text{ is the CV.} \qquad \text{APX}(\overrightarrow{\mu}, \overrightarrow{\sigma}) = \inf_{\substack{\text{mechs distribs}}} \sup_{\substack{\text{distribs}}} \frac{\text{OPT}(F)}{\text{REV}(A; F)}$

This is achieved by offering a take-it-or-leave-it price of $p = \frac{\rho_D(r)}{2\rho_D(r) - 1} \cdot \mu$.

and is achieved by randomization over posted prices.

Thm3: When selling *m* (possibly correlated) $(\vec{\mu}, \vec{\sigma})$ -distributed items then APX $(\vec{\mu}, \vec{\sigma})$ is $\mathcal{O}(\log r_{\max})$. Mechanism: Sell each item separately with the lottery of Thm2.

Thm1: The deterministic APX(μ , σ) of selling a single (μ , σ)-distributed item is $\rho_D(r) \approx 1 + 4 \cdot r^2$.

Thm2: The randomized APX(μ , σ) for single items is $\rho(r) \approx 1 + \ln(1 + r^2)$. It is asymptotically tight

The bounds for small values of r

The bounds for small values of r

CV is small for known classes of distributions (e.g. MHR). If bounded by universal constant, then $APX(\overrightarrow{\mu}, \overrightarrow{\sigma})$ constant!

$$\inf_{A \in \mathbb{A}_1} \sup_{F \in \mathbb{F}_{\mu,\sigma}} \frac{\operatorname{OPT}(F)}{\operatorname{REV}(A;F)} \geq \sup_{(B,F) \in \Delta_{\mu,\sigma}} \inf_{p \geq 0} \frac{\mathbb{E}_{\varepsilon \sim B}[\operatorname{OPT}(F_{\varepsilon})]}{\mathbb{E}_{\varepsilon \sim B}[\operatorname{REV}(p;F_{\varepsilon})]}$$

$$\inf_{A \in \mathbb{A}_1} \sup_{F \in \mathbb{F}_{\mu,\sigma}} \frac{\operatorname{OPT}(F)}{\operatorname{REV}(A;F)} \geq \sup_{(B,F) \in \Delta_{\mu,\sigma}} \inf_{p \geq 0} \frac{\mathbb{E}_{\varepsilon \sim B}[\operatorname{OPT}(F_{\varepsilon})]}{\mathbb{E}_{\varepsilon \sim B}[\operatorname{REV}(p;F_{\varepsilon})]}$$

"Distributions over Distributions"

$$\inf_{A \in \mathbb{A}_1} \sup_{F \in \mathbb{F}_{\mu,\sigma}} \frac{\operatorname{OPT}(F)}{\operatorname{REV}(A;F)} \geq \sup_{\substack{(B,F) \in \Delta_{\mu,\sigma}}} \inf_{p \geq 0} \frac{\mathbb{E}_{\varepsilon \sim B}[\operatorname{OPT}(F_{\varepsilon})]}{\mathbb{E}_{\varepsilon \sim B}[\operatorname{REV}(p;F_{\varepsilon})]}$$

"Distributions over Distributions"

$$\inf_{A \in A_1} \sup_{F \in \mathbb{F}_{\mu,\sigma}} \frac{\operatorname{OPT}(F)}{\operatorname{REV}(A;F)} \ge \sup_{(B,F)} (B,F)$$
"Distributions ov"

$G(z) = \mathbb{E}_{\varepsilon \sim B}[F_{\varepsilon}](z)$

• Multiple bidders - multiple items (generalize ours & [Azar et al. SODA '13])

- Multiple bidders multiple items (generalize ours & [Azar et al. SODA '13])
- Intervals of confidence

- Multiple bidders multiple items (generalize ours & [Azar et al. SODA '13])
- Intervals of confidence
- Broader classes of valuations

- Multiple bidders multiple items (generalize ours & [Azar et al. SODA '13])
- Intervals of confidence
- Broader classes of valuations
- Higher-order moments the "moment complexity"

